1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
//! Defines the IR for types and logical predicates.

#![deny(rust_2018_idioms)]
#![warn(missing_docs)]

// Allows macros to refer to this crate as `::chalk_ir`
extern crate self as chalk_ir;

use crate::cast::{Cast, CastTo, Caster};
use crate::fold::shift::Shift;
use crate::fold::{FallibleTypeFolder, Subst, TypeFoldable, TypeFolder, TypeSuperFoldable};
use crate::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor, VisitExt};
use chalk_derive::{
    FallibleTypeFolder, HasInterner, TypeFoldable, TypeSuperVisitable, TypeVisitable, Zip,
};
use std::marker::PhantomData;
use std::ops::ControlFlow;

pub use crate::debug::SeparatorTraitRef;
#[macro_use(bitflags)]
extern crate bitflags;
/// Uninhabited (empty) type, used in combination with `PhantomData`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Void {}

/// Many of our internal operations (e.g., unification) are an attempt
/// to perform some operation which may not complete.
pub type Fallible<T> = Result<T, NoSolution>;

/// A combination of `Fallible` and `Floundered`.
pub enum FallibleOrFloundered<T> {
    /// Success
    Ok(T),
    /// No solution. See `chalk_ir::NoSolution`.
    NoSolution,
    /// Floundered. See `chalk_ir::Floundered`.
    Floundered,
}

/// Indicates that the attempted operation has "no solution" -- i.e.,
/// cannot be performed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct NoSolution;

/// Indicates that the complete set of program clauses for this goal
/// cannot be enumerated.
pub struct Floundered;

macro_rules! impl_debugs {
    ($($id:ident), *) => {
        $(
            impl<I: Interner> std::fmt::Debug for $id<I> {
                fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
                    write!(fmt, "{}({:?})", stringify!($id), self.0)
                }
            }
        )*
    };
}

#[macro_use]
pub mod zip;

#[macro_use]
pub mod fold;

#[macro_use]
pub mod visit;

pub mod cast;

pub mod interner;
use interner::{HasInterner, Interner};

pub mod could_match;
pub mod debug;

/// Variance
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum Variance {
    /// a <: b
    Covariant,
    /// a == b
    Invariant,
    /// b <: a
    Contravariant,
}

impl Variance {
    /// `a.xform(b)` combines the variance of a context with the
    /// variance of a type with the following meaning. If we are in a
    /// context with variance `a`, and we encounter a type argument in
    /// a position with variance `b`, then `a.xform(b)` is the new
    /// variance with which the argument appears.
    ///
    /// Example 1:
    ///
    /// ```ignore
    /// *mut Vec<i32>
    /// ```
    ///
    /// Here, the "ambient" variance starts as covariant. `*mut T` is
    /// invariant with respect to `T`, so the variance in which the
    /// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
    /// yields `Invariant`. Now, the type `Vec<T>` is covariant with
    /// respect to its type argument `T`, and hence the variance of
    /// the `i32` here is `Invariant.xform(Covariant)`, which results
    /// (again) in `Invariant`.
    ///
    /// Example 2:
    ///
    /// ```ignore
    /// fn(*const Vec<i32>, *mut Vec<i32)
    /// ```
    ///
    /// The ambient variance is covariant. A `fn` type is
    /// contravariant with respect to its parameters, so the variance
    /// within which both pointer types appear is
    /// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
    /// T` is covariant with respect to `T`, so the variance within
    /// which the first `Vec<i32>` appears is
    /// `Contravariant.xform(Covariant)` or `Contravariant`. The same
    /// is true for its `i32` argument. In the `*mut T` case, the
    /// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
    /// and hence the outermost type is `Invariant` with respect to
    /// `Vec<i32>` (and its `i32` argument).
    ///
    /// Source: Figure 1 of "Taming the Wildcards:
    /// Combining Definition- and Use-Site Variance" published in PLDI'11.
    /// (Doc from rustc)
    pub fn xform(self, other: Variance) -> Variance {
        match (self, other) {
            (Variance::Invariant, _) => Variance::Invariant,
            (_, Variance::Invariant) => Variance::Invariant,
            (_, Variance::Covariant) => self,
            (Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
            (Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
        }
    }

    /// Converts `Covariant` into `Contravariant` and vice-versa. `Invariant`
    /// stays the same.
    pub fn invert(self) -> Variance {
        match self {
            Variance::Invariant => Variance::Invariant,
            Variance::Covariant => Variance::Contravariant,
            Variance::Contravariant => Variance::Covariant,
        }
    }
}

#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
/// The set of assumptions we've made so far, and the current number of
/// universal (forall) quantifiers we're within.
pub struct Environment<I: Interner> {
    /// The clauses in the environment.
    pub clauses: ProgramClauses<I>,
}

impl<I: Interner> Copy for Environment<I> where I::InternedProgramClauses: Copy {}

impl<I: Interner> Environment<I> {
    /// Creates a new environment.
    pub fn new(interner: I) -> Self {
        Environment {
            clauses: ProgramClauses::empty(interner),
        }
    }

    /// Adds (an iterator of) clauses to the environment.
    pub fn add_clauses<II>(&self, interner: I, clauses: II) -> Self
    where
        II: IntoIterator<Item = ProgramClause<I>>,
    {
        let mut env = self.clone();
        env.clauses =
            ProgramClauses::from_iter(interner, env.clauses.iter(interner).cloned().chain(clauses));
        env
    }

    /// True if any of the clauses in the environment have a consequence of `Compatible`.
    /// Panics if the conditions or constraints of that clause are not empty.
    pub fn has_compatible_clause(&self, interner: I) -> bool {
        self.clauses.as_slice(interner).iter().any(|c| {
            let ProgramClauseData(implication) = c.data(interner);
            match implication.skip_binders().consequence {
                DomainGoal::Compatible => {
                    // We currently don't generate `Compatible` with any conditions or constraints
                    // If this was needed, for whatever reason, then a third "yes, but must evaluate"
                    // return value would have to be added.
                    assert!(implication.skip_binders().conditions.is_empty(interner));
                    assert!(implication.skip_binders().constraints.is_empty(interner));
                    true
                }
                _ => false,
            }
        })
    }
}

/// A goal with an environment to solve it in.
#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
#[allow(missing_docs)]
pub struct InEnvironment<G: HasInterner> {
    pub environment: Environment<G::Interner>,
    pub goal: G,
}

impl<G: HasInterner<Interner = I> + Copy, I: Interner> Copy for InEnvironment<G> where
    I::InternedProgramClauses: Copy
{
}

impl<G: HasInterner> InEnvironment<G> {
    /// Creates a new environment/goal pair.
    pub fn new(environment: &Environment<G::Interner>, goal: G) -> Self {
        InEnvironment {
            environment: environment.clone(),
            goal,
        }
    }

    /// Maps the goal without touching the environment.
    pub fn map<OP, H>(self, op: OP) -> InEnvironment<H>
    where
        OP: FnOnce(G) -> H,
        H: HasInterner<Interner = G::Interner>,
    {
        InEnvironment {
            environment: self.environment,
            goal: op(self.goal),
        }
    }
}

impl<G: HasInterner> HasInterner for InEnvironment<G> {
    type Interner = G::Interner;
}

/// Different signed int types.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum IntTy {
    Isize,
    I8,
    I16,
    I32,
    I64,
    I128,
}

/// Different unsigned int types.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum UintTy {
    Usize,
    U8,
    U16,
    U32,
    U64,
    U128,
}

/// Different kinds of float types.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum FloatTy {
    F32,
    F64,
}

/// Types of scalar values.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum Scalar {
    Bool,
    Char,
    Int(IntTy),
    Uint(UintTy),
    Float(FloatTy),
}

/// Whether a function is safe or not.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Safety {
    /// Safe
    Safe,
    /// Unsafe
    Unsafe,
}

/// Whether a type is mutable or not.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Mutability {
    /// Mutable
    Mut,
    /// Immutable
    Not,
}

/// An universe index is how a universally quantified parameter is
/// represented when it's binder is moved into the environment.
/// An example chain of transformations would be:
/// `forall<T> { Goal(T) }` (syntactical representation)
/// `forall { Goal(?0) }` (used a DeBruijn index)
/// `Goal(!U1)` (the quantifier was moved to the environment and replaced with a universe index)
/// See <https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#placeholders-and-universes> for more.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct UniverseIndex {
    /// The counter for the universe index, starts with 0.
    pub counter: usize,
}

impl UniverseIndex {
    /// Root universe index (0).
    pub const ROOT: UniverseIndex = UniverseIndex { counter: 0 };

    /// Root universe index (0).
    pub fn root() -> UniverseIndex {
        Self::ROOT
    }

    /// Whether one universe can "see" another.
    pub fn can_see(self, ui: UniverseIndex) -> bool {
        self.counter >= ui.counter
    }

    /// Increases the index counter.
    pub fn next(self) -> UniverseIndex {
        UniverseIndex {
            counter: self.counter + 1,
        }
    }
}

/// Maps the universes found in the `u_canonicalize` result (the
/// "canonical" universes) to the universes found in the original
/// value (and vice versa). When used as a folder -- i.e., from
/// outside this module -- converts from "canonical" universes to the
/// original (but see the `UMapToCanonical` folder).
#[derive(Clone, Debug)]
pub struct UniverseMap {
    /// A reverse map -- for each universe Ux that appears in
    /// `quantified`, the corresponding universe in the original was
    /// `universes[x]`.
    pub universes: Vec<UniverseIndex>,
}

impl UniverseMap {
    /// Creates a new universe map.
    pub fn new() -> Self {
        UniverseMap {
            universes: vec![UniverseIndex::root()],
        }
    }

    /// Number of canonical universes.
    pub fn num_canonical_universes(&self) -> usize {
        self.universes.len()
    }
}

/// The id for an Abstract Data Type (i.e. structs, unions and enums).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct AdtId<I: Interner>(pub I::InternedAdtId);

/// The id of a trait definition; could be used to load the trait datum by
/// invoking the [`trait_datum`] method.
///
/// [`trait_datum`]: ../chalk_solve/trait.RustIrDatabase.html#tymethod.trait_datum
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct TraitId<I: Interner>(pub I::DefId);

/// The id for an impl.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ImplId<I: Interner>(pub I::DefId);

/// Id for a specific clause.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ClauseId<I: Interner>(pub I::DefId);

/// The id for the associated type member of a trait. The details of the type
/// can be found by invoking the [`associated_ty_data`] method.
///
/// [`associated_ty_data`]: ../chalk_solve/trait.RustIrDatabase.html#tymethod.associated_ty_data
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct AssocTypeId<I: Interner>(pub I::DefId);

/// Id for an opaque type.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct OpaqueTyId<I: Interner>(pub I::DefId);

/// Function definition id.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct FnDefId<I: Interner>(pub I::DefId);

/// Id for Rust closures.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ClosureId<I: Interner>(pub I::DefId);

/// Id for Rust coroutines.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CoroutineId<I: Interner>(pub I::DefId);

/// Id for foreign types.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ForeignDefId<I: Interner>(pub I::DefId);

impl_debugs!(ImplId, ClauseId);

/// A Rust type. The actual type data is stored in `TyKind`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct Ty<I: Interner> {
    interned: I::InternedType,
}

impl<I: Interner> Ty<I> {
    /// Creates a type from `TyKind`.
    pub fn new(interner: I, data: impl CastTo<TyKind<I>>) -> Self {
        let ty_kind = data.cast(interner);
        Ty {
            interned: I::intern_ty(interner, ty_kind),
        }
    }

    /// Gets the interned type.
    pub fn interned(&self) -> &I::InternedType {
        &self.interned
    }

    /// Gets the underlying type data.
    pub fn data(&self, interner: I) -> &TyData<I> {
        I::ty_data(interner, &self.interned)
    }

    /// Gets the underlying type kind.
    pub fn kind(&self, interner: I) -> &TyKind<I> {
        &I::ty_data(interner, &self.interned).kind
    }

    /// Creates a `FromEnv` constraint using this type.
    pub fn from_env(&self) -> FromEnv<I> {
        FromEnv::Ty(self.clone())
    }

    /// Creates a WF-constraint for this type.
    pub fn well_formed(&self) -> WellFormed<I> {
        WellFormed::Ty(self.clone())
    }

    /// Creates a domain goal `FromEnv(T)` where `T` is this type.
    pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
        self.from_env().cast(interner)
    }

    /// If this is a `TyKind::BoundVar(d)`, returns `Some(d)` else `None`.
    pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
        if let TyKind::BoundVar(bv) = self.kind(interner) {
            Some(*bv)
        } else {
            None
        }
    }

    /// If this is a `TyKind::InferenceVar(d)`, returns `Some(d)` else `None`.
    pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
        if let TyKind::InferenceVar(depth, _) = self.kind(interner) {
            Some(*depth)
        } else {
            None
        }
    }

    /// Returns true if this is a `BoundVar` or an `InferenceVar` of `TyVariableKind::General`.
    pub fn is_general_var(&self, interner: I, binders: &CanonicalVarKinds<I>) -> bool {
        match self.kind(interner) {
            TyKind::BoundVar(bv)
                if bv.debruijn == DebruijnIndex::INNERMOST
                    && binders.at(interner, bv.index).kind
                        == VariableKind::Ty(TyVariableKind::General) =>
            {
                true
            }
            TyKind::InferenceVar(_, TyVariableKind::General) => true,
            _ => false,
        }
    }

    /// Returns true if this is an `Alias`.
    pub fn is_alias(&self, interner: I) -> bool {
        matches!(self.kind(interner), TyKind::Alias(..))
    }

    /// Returns true if this is an `IntTy` or `UintTy`.
    pub fn is_integer(&self, interner: I) -> bool {
        matches!(
            self.kind(interner),
            TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
        )
    }

    /// Returns true if this is a `FloatTy`.
    pub fn is_float(&self, interner: I) -> bool {
        matches!(self.kind(interner), TyKind::Scalar(Scalar::Float(_)))
    }

    /// Returns `Some(adt_id)` if this is an ADT, `None` otherwise
    pub fn adt_id(&self, interner: I) -> Option<AdtId<I>> {
        match self.kind(interner) {
            TyKind::Adt(adt_id, _) => Some(*adt_id),
            _ => None,
        }
    }

    /// True if this type contains "bound" types/lifetimes, and hence
    /// needs to be shifted across binders. This is a very inefficient
    /// check, intended only for debug assertions, because I am lazy.
    pub fn needs_shift(&self, interner: I) -> bool {
        self.has_free_vars(interner)
    }
}

/// Contains the data for a Ty
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub struct TyData<I: Interner> {
    /// The kind
    pub kind: TyKind<I>,
    /// Type flags
    pub flags: TypeFlags,
}

bitflags! {
    /// Contains flags indicating various properties of a Ty
    #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
    pub struct TypeFlags : u16 {
        /// Does the type contain an InferenceVar
        const HAS_TY_INFER                = 1;
        /// Does the type contain a lifetime with an InferenceVar
        const HAS_RE_INFER                = 1 << 1;
        /// Does the type contain a ConstValue with an InferenceVar
        const HAS_CT_INFER                = 1 << 2;
        /// Does the type contain a Placeholder TyKind
        const HAS_TY_PLACEHOLDER          = 1 << 3;
        /// Does the type contain a lifetime with a Placeholder
        const HAS_RE_PLACEHOLDER          = 1 << 4;
        /// Does the type contain a ConstValue Placeholder
        const HAS_CT_PLACEHOLDER          = 1 << 5;
        /// True when the type has free lifetimes related to a local context
        const HAS_FREE_LOCAL_REGIONS      = 1 << 6;
        /// Does the type contain a projection of an associated type
        const HAS_TY_PROJECTION           = 1 << 7;
        /// Does the type contain an opaque type
        const HAS_TY_OPAQUE               = 1 << 8;
        /// Does the type contain an unevaluated const projection
        const HAS_CT_PROJECTION           = 1 << 9;
        /// Does the type contain an error
        const HAS_ERROR                   = 1 << 10;
        /// Does the type contain an error lifetime
        const HAS_RE_ERROR                = 1 << 11;
        /// Does the type contain any free lifetimes
        const HAS_FREE_REGIONS            = 1 << 12;
        /// True when the type contains lifetimes that will be substituted when function is called
        const HAS_RE_LATE_BOUND           = 1 << 13;
        /// True when the type contains an erased lifetime
        const HAS_RE_ERASED               = 1 << 14;
        /// Does the type contain placeholders or inference variables that could be replaced later
        const STILL_FURTHER_SPECIALIZABLE = 1 << 15;

        /// True when the type contains free names local to a particular context
        const HAS_FREE_LOCAL_NAMES        = TypeFlags::HAS_TY_INFER.bits()
                                          | TypeFlags::HAS_CT_INFER.bits()
                                          | TypeFlags::HAS_TY_PLACEHOLDER.bits()
                                          | TypeFlags::HAS_CT_PLACEHOLDER.bits()
                                          | TypeFlags::HAS_FREE_LOCAL_REGIONS.bits();

        /// Does the type contain any form of projection
        const HAS_PROJECTION              = TypeFlags::HAS_TY_PROJECTION.bits()
                                          | TypeFlags::HAS_TY_OPAQUE.bits()
                                          | TypeFlags::HAS_CT_PROJECTION.bits();
    }
}
/// Type data, which holds the actual type information.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub enum TyKind<I: Interner> {
    /// Abstract data types, i.e., structs, unions, or enumerations.
    /// For example, a type like `Vec<T>`.
    Adt(AdtId<I>, Substitution<I>),

    /// an associated type like `Iterator::Item`; see `AssociatedType` for details
    AssociatedType(AssocTypeId<I>, Substitution<I>),

    /// a scalar type like `bool` or `u32`
    Scalar(Scalar),

    /// a tuple of the given arity
    Tuple(usize, Substitution<I>),

    /// an array type like `[T; N]`
    Array(Ty<I>, Const<I>),

    /// a slice type like `[T]`
    Slice(Ty<I>),

    /// a raw pointer type like `*const T` or `*mut T`
    Raw(Mutability, Ty<I>),

    /// a reference type like `&T` or `&mut T`
    Ref(Mutability, Lifetime<I>, Ty<I>),

    /// a placeholder for opaque types like `impl Trait`
    OpaqueType(OpaqueTyId<I>, Substitution<I>),

    /// a function definition
    FnDef(FnDefId<I>, Substitution<I>),

    /// the string primitive type
    Str,

    /// the never type `!`
    Never,

    /// A closure.
    Closure(ClosureId<I>, Substitution<I>),

    /// A coroutine.
    Coroutine(CoroutineId<I>, Substitution<I>),

    /// A coroutine witness.
    CoroutineWitness(CoroutineId<I>, Substitution<I>),

    /// foreign types
    Foreign(ForeignDefId<I>),

    /// This can be used to represent an error, e.g. during name resolution of a type.
    /// Chalk itself will not produce this, just pass it through when given.
    Error,

    /// instantiated from a universally quantified type, e.g., from
    /// `forall<T> { .. }`. Stands in as a representative of "some
    /// unknown type".
    Placeholder(PlaceholderIndex),

    /// A "dyn" type is a trait object type created via the "dyn Trait" syntax.
    /// In the chalk parser, the traits that the object represents is parsed as
    /// a QuantifiedInlineBound, and is then changed to a list of where clauses
    /// during lowering.
    ///
    /// See the `Opaque` variant for a discussion about the use of
    /// binders here.
    Dyn(DynTy<I>),

    /// An "alias" type represents some form of type alias, such as:
    /// - An associated type projection like `<T as Iterator>::Item`
    /// - `impl Trait` types
    /// - Named type aliases like `type Foo<X> = Vec<X>`
    Alias(AliasTy<I>),

    /// A function type such as `for<'a> fn(&'a u32)`.
    /// Note that "higher-ranked" types (starting with `for<>`) are either
    /// function types or dyn types, and do not appear otherwise in Rust
    /// surface syntax.
    Function(FnPointer<I>),

    /// References the binding at the given depth. The index is a [de
    /// Bruijn index], so it counts back through the in-scope binders.
    BoundVar(BoundVar),

    /// Inference variable defined in the current inference context.
    InferenceVar(InferenceVar, TyVariableKind),
}

impl<I: Interner> Copy for TyKind<I>
where
    I::InternedLifetime: Copy,
    I::InternedSubstitution: Copy,
    I::InternedVariableKinds: Copy,
    I::InternedQuantifiedWhereClauses: Copy,
    I::InternedType: Copy,
    I::InternedConst: Copy,
{
}

impl<I: Interner> TyKind<I> {
    /// Casts the type data to a type.
    pub fn intern(self, interner: I) -> Ty<I> {
        Ty::new(interner, self)
    }

    /// Compute type flags for a TyKind
    pub fn compute_flags(&self, interner: I) -> TypeFlags {
        match self {
            TyKind::Adt(_, substitution)
            | TyKind::AssociatedType(_, substitution)
            | TyKind::Tuple(_, substitution)
            | TyKind::Closure(_, substitution)
            | TyKind::Coroutine(_, substitution)
            | TyKind::CoroutineWitness(_, substitution)
            | TyKind::FnDef(_, substitution)
            | TyKind::OpaqueType(_, substitution) => substitution.compute_flags(interner),
            TyKind::Scalar(_) | TyKind::Str | TyKind::Never | TyKind::Foreign(_) => {
                TypeFlags::empty()
            }
            TyKind::Error => TypeFlags::HAS_ERROR,
            TyKind::Slice(ty) | TyKind::Raw(_, ty) => ty.data(interner).flags,
            TyKind::Ref(_, lifetime, ty) => {
                lifetime.compute_flags(interner) | ty.data(interner).flags
            }
            TyKind::Array(ty, const_ty) => {
                let flags = ty.data(interner).flags;
                let const_data = const_ty.data(interner);
                flags
                    | const_data.ty.data(interner).flags
                    | match const_data.value {
                        ConstValue::BoundVar(_) | ConstValue::Concrete(_) => TypeFlags::empty(),
                        ConstValue::InferenceVar(_) => {
                            TypeFlags::HAS_CT_INFER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
                        }
                        ConstValue::Placeholder(_) => {
                            TypeFlags::HAS_CT_PLACEHOLDER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
                        }
                    }
            }
            TyKind::Placeholder(_) => TypeFlags::HAS_TY_PLACEHOLDER,
            TyKind::Dyn(dyn_ty) => {
                let lifetime_flags = dyn_ty.lifetime.compute_flags(interner);
                let mut dyn_flags = TypeFlags::empty();
                for var_kind in dyn_ty.bounds.skip_binders().iter(interner) {
                    match &(var_kind.skip_binders()) {
                        WhereClause::Implemented(trait_ref) => {
                            dyn_flags |= trait_ref.substitution.compute_flags(interner)
                        }
                        WhereClause::AliasEq(alias_eq) => {
                            dyn_flags |= alias_eq.alias.compute_flags(interner);
                            dyn_flags |= alias_eq.ty.data(interner).flags;
                        }
                        WhereClause::LifetimeOutlives(lifetime_outlives) => {
                            dyn_flags |= lifetime_outlives.a.compute_flags(interner)
                                | lifetime_outlives.b.compute_flags(interner);
                        }
                        WhereClause::TypeOutlives(type_outlives) => {
                            dyn_flags |= type_outlives.ty.data(interner).flags;
                            dyn_flags |= type_outlives.lifetime.compute_flags(interner);
                        }
                    }
                }
                lifetime_flags | dyn_flags
            }
            TyKind::Alias(alias_ty) => alias_ty.compute_flags(interner),
            TyKind::BoundVar(_) => TypeFlags::empty(),
            TyKind::InferenceVar(_, _) => TypeFlags::HAS_TY_INFER,
            TyKind::Function(fn_pointer) => fn_pointer.substitution.0.compute_flags(interner),
        }
    }
}

/// Identifies a particular bound variable within a binder.
/// Variables are identified by the combination of a [`DebruijnIndex`],
/// which identifies the *binder*, and an index within that binder.
///
/// Consider this case:
///
/// ```ignore
/// forall<'a, 'b> { forall<'c, 'd> { ... } }
/// ```
///
/// Within the `...` term:
///
/// * the variable `'a` have a debruijn index of 1 and index 0
/// * the variable `'b` have a debruijn index of 1 and index 1
/// * the variable `'c` have a debruijn index of 0 and index 0
/// * the variable `'d` have a debruijn index of 0 and index 1
///
/// The variables `'a` and `'b` both have debruijn index of 1 because,
/// counting out, they are the 2nd binder enclosing `...`. The indices
/// identify the location *within* that binder.
///
/// The variables `'c` and `'d` both have debruijn index of 0 because
/// they appear in the *innermost* binder enclosing the `...`. The
/// indices identify the location *within* that binder.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct BoundVar {
    /// Debruijn index, which identifies the binder.
    pub debruijn: DebruijnIndex,
    /// Index within the binder.
    pub index: usize,
}

impl BoundVar {
    /// Creates a new bound variable.
    pub fn new(debruijn: DebruijnIndex, index: usize) -> Self {
        Self { debruijn, index }
    }

    /// Casts the bound variable to a type.
    pub fn to_ty<I: Interner>(self, interner: I) -> Ty<I> {
        TyKind::<I>::BoundVar(self).intern(interner)
    }

    /// Wrap the bound variable in a lifetime.
    pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
        LifetimeData::<I>::BoundVar(self).intern(interner)
    }

    /// Wraps the bound variable in a constant.
    pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
        ConstData {
            ty,
            value: ConstValue::<I>::BoundVar(self),
        }
        .intern(interner)
    }

    /// True if this variable is bound within the `amount` innermost binders.
    pub fn bound_within(self, outer_binder: DebruijnIndex) -> bool {
        self.debruijn.within(outer_binder)
    }

    /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
    #[must_use]
    pub fn shifted_in(self) -> Self {
        BoundVar::new(self.debruijn.shifted_in(), self.index)
    }

    /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
    #[must_use]
    pub fn shifted_in_from(self, outer_binder: DebruijnIndex) -> Self {
        BoundVar::new(self.debruijn.shifted_in_from(outer_binder), self.index)
    }

    /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
    #[must_use]
    pub fn shifted_out(self) -> Option<Self> {
        self.debruijn
            .shifted_out()
            .map(|db| BoundVar::new(db, self.index))
    }

    /// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
    #[must_use]
    pub fn shifted_out_to(self, outer_binder: DebruijnIndex) -> Option<Self> {
        self.debruijn
            .shifted_out_to(outer_binder)
            .map(|db| BoundVar::new(db, self.index))
    }

    /// Return the index of the bound variable, but only if it is bound
    /// at the innermost binder. Otherwise, returns `None`.
    pub fn index_if_innermost(self) -> Option<usize> {
        self.index_if_bound_at(DebruijnIndex::INNERMOST)
    }

    /// Return the index of the bound variable, but only if it is bound
    /// at the innermost binder. Otherwise, returns `None`.
    pub fn index_if_bound_at(self, debruijn: DebruijnIndex) -> Option<usize> {
        if self.debruijn == debruijn {
            Some(self.index)
        } else {
            None
        }
    }
}

/// References the binder at the given depth. The index is a [de
/// Bruijn index], so it counts back through the in-scope binders,
/// with 0 being the innermost binder. This is used in impls and
/// the like. For example, if we had a rule like `for<T> { (T:
/// Clone) :- (T: Copy) }`, then `T` would be represented as a
/// `BoundVar(0)` (as the `for` is the innermost binder).
///
/// [de Bruijn index]: https://en.wikipedia.org/wiki/De_Bruijn_index
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct DebruijnIndex {
    depth: u32,
}

impl DebruijnIndex {
    /// Innermost index.
    pub const INNERMOST: DebruijnIndex = DebruijnIndex { depth: 0 };
    /// One level higher than the innermost index.
    pub const ONE: DebruijnIndex = DebruijnIndex { depth: 1 };

    /// Creates a new de Bruijn index with a given depth.
    pub fn new(depth: u32) -> Self {
        DebruijnIndex { depth }
    }

    /// Depth of the De Bruijn index, counting from 0 starting with
    /// the innermost binder.
    pub fn depth(self) -> u32 {
        self.depth
    }

    /// True if the binder identified by this index is within the
    /// binder identified by the index `outer_binder`.
    ///
    /// # Example
    ///
    /// Imagine you have the following binders in scope
    ///
    /// ```ignore
    /// forall<a> forall<b> forall<c>
    /// ```
    ///
    /// then the Debruijn index for `c` would be `0`, the index for
    /// `b` would be 1, and so on. Now consider the following calls:
    ///
    /// * `c.within(a) = true`
    /// * `b.within(a) = true`
    /// * `a.within(a) = false`
    /// * `a.within(c) = false`
    pub fn within(self, outer_binder: DebruijnIndex) -> bool {
        self < outer_binder
    }

    /// Returns the resulting index when this value is moved into
    /// through one binder.
    #[must_use]
    pub fn shifted_in(self) -> DebruijnIndex {
        self.shifted_in_from(DebruijnIndex::ONE)
    }

    /// Update this index in place by shifting it "in" through
    /// `amount` number of binders.
    pub fn shift_in(&mut self) {
        *self = self.shifted_in();
    }

    /// Adds `outer_binder` levels to the `self` index. Intuitively, this
    /// shifts the `self` index, which was valid at the outer binder,
    /// so that it is valid at the innermost binder.
    ///
    /// Example: Assume that the following binders are in scope:
    ///
    /// ```ignore
    /// for<A> for<B> for<C> for<D>
    ///            ^ outer binder
    /// ```
    ///
    /// Assume further that the `outer_binder` argument is 2,
    /// which means that it is referring to the `for<B>` binder
    /// (since `D` would be the innermost binder).
    ///
    /// This means that `self` is relative to the binder `B` -- so
    /// if `self` is 0 (`INNERMOST`), then it refers to `B`,
    /// and if `self` is 1, then it refers to `A`.
    ///
    /// We will return as follows:
    ///
    /// * `0.shifted_in_from(2) = 2` -- i.e., `B`, when shifted in to the binding level `D`, has index 2
    /// * `1.shifted_in_from(2) = 3` -- i.e., `A`, when shifted in to the binding level `D`, has index 3
    /// * `2.shifted_in_from(1) = 3` -- here, we changed the `outer_binder`  to refer to `C`.
    ///   Therefore `2` (relative to `C`) refers to `A`, so the result is still 3 (since `A`, relative to the
    ///   innermost binder, has index 3).
    #[must_use]
    pub fn shifted_in_from(self, outer_binder: DebruijnIndex) -> DebruijnIndex {
        DebruijnIndex::new(self.depth() + outer_binder.depth())
    }

    /// Returns the resulting index when this value is moved out from
    /// `amount` number of new binders.
    #[must_use]
    pub fn shifted_out(self) -> Option<DebruijnIndex> {
        self.shifted_out_to(DebruijnIndex::ONE)
    }

    /// Update in place by shifting out from `amount` binders.
    pub fn shift_out(&mut self) {
        *self = self.shifted_out().unwrap();
    }

    /// Subtracts `outer_binder` levels from the `self` index. Intuitively, this
    /// shifts the `self` index, which was valid at the innermost
    /// binder, to one that is valid at the binder `outer_binder`.
    ///
    /// This will return `None` if the `self` index is internal to the
    /// outer binder (i.e., if `self < outer_binder`).
    ///
    /// Example: Assume that the following binders are in scope:
    ///
    /// ```ignore
    /// for<A> for<B> for<C> for<D>
    ///            ^ outer binder
    /// ```
    ///
    /// Assume further that the `outer_binder` argument is 2,
    /// which means that it is referring to the `for<B>` binder
    /// (since `D` would be the innermost binder).
    ///
    /// This means that the result is relative to the binder `B` -- so
    /// if `self` is 0 (`INNERMOST`), then it refers to `B`,
    /// and if `self` is 1, then it refers to `A`.
    ///
    /// We will return as follows:
    ///
    /// * `1.shifted_out_to(2) = None` -- i.e., the binder for `C` can't be named from the binding level `B`
    /// * `3.shifted_out_to(2) = Some(1)` -- i.e., `A`, when shifted out to the binding level `B`, has index 1
    pub fn shifted_out_to(self, outer_binder: DebruijnIndex) -> Option<DebruijnIndex> {
        if self.within(outer_binder) {
            None
        } else {
            Some(DebruijnIndex::new(self.depth() - outer_binder.depth()))
        }
    }
}

/// A "DynTy" represents a trait object (`dyn Trait`). Trait objects
/// are conceptually very related to an "existential type" of the form
/// `exists<T> { T: Trait }` (another example of such type is `impl Trait`).
/// `DynTy` represents the bounds on that type.
///
/// The "bounds" here represents the unknown self type. So, a type like
/// `dyn for<'a> Fn(&'a u32)` would be represented with two-levels of
/// binder, as "depicted" here:
///
/// ```notrust
/// exists<type> {
///    vec![
///        // A QuantifiedWhereClause:
///        forall<region> { ^1.0: Fn(&^0.0 u32) }
///    ]
/// }
/// ```
///
/// The outer `exists<type>` binder indicates that there exists
/// some type that meets the criteria within, but that type is not
/// known. It is referenced within the type using `^1.0`, indicating
/// a bound type with debruijn index 1 (i.e., skipping through one
/// level of binder).
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct DynTy<I: Interner> {
    /// The unknown self type.
    pub bounds: Binders<QuantifiedWhereClauses<I>>,
    /// Lifetime of the `DynTy`.
    pub lifetime: Lifetime<I>,
}

impl<I: Interner> Copy for DynTy<I>
where
    I::InternedLifetime: Copy,
    I::InternedQuantifiedWhereClauses: Copy,
    I::InternedVariableKinds: Copy,
{
}

/// A type, lifetime or constant whose value is being inferred.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct InferenceVar {
    index: u32,
}

impl From<u32> for InferenceVar {
    fn from(index: u32) -> InferenceVar {
        InferenceVar { index }
    }
}

impl InferenceVar {
    /// Gets the underlying index value.
    pub fn index(self) -> u32 {
        self.index
    }

    /// Wraps the inference variable in a type.
    pub fn to_ty<I: Interner>(self, interner: I, kind: TyVariableKind) -> Ty<I> {
        TyKind::<I>::InferenceVar(self, kind).intern(interner)
    }

    /// Wraps the inference variable in a lifetime.
    pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
        LifetimeData::<I>::InferenceVar(self).intern(interner)
    }

    /// Wraps the inference variable in a constant.
    pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
        ConstData {
            ty,
            value: ConstValue::<I>::InferenceVar(self),
        }
        .intern(interner)
    }
}

/// A function signature.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HasInterner, Debug)]
#[allow(missing_docs)]
pub struct FnSig<I: Interner> {
    pub abi: I::FnAbi,
    pub safety: Safety,
    pub variadic: bool,
}
/// A wrapper for the substs on a Fn.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner, TypeFoldable, TypeVisitable)]
pub struct FnSubst<I: Interner>(pub Substitution<I>);

impl<I: Interner> Copy for FnSubst<I> where I::InternedSubstitution: Copy {}

/// for<'a...'z> X -- all binders are instantiated at once,
/// and we use deBruijn indices within `self.ty`
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
#[allow(missing_docs)]
pub struct FnPointer<I: Interner> {
    pub num_binders: usize,
    pub sig: FnSig<I>,
    pub substitution: FnSubst<I>,
}

impl<I: Interner> Copy for FnPointer<I> where I::InternedSubstitution: Copy {}

impl<I: Interner> FnPointer<I> {
    /// Represent the current `Fn` as if it was wrapped in `Binders`
    pub fn into_binders(self, interner: I) -> Binders<FnSubst<I>> {
        Binders::new(
            VariableKinds::from_iter(
                interner,
                (0..self.num_binders).map(|_| VariableKind::Lifetime),
            ),
            self.substitution,
        )
    }

    /// Represent the current `Fn` as if it was wrapped in `Binders`
    pub fn as_binders(&self, interner: I) -> Binders<&FnSubst<I>> {
        Binders::new(
            VariableKinds::from_iter(
                interner,
                (0..self.num_binders).map(|_| VariableKind::Lifetime),
            ),
            &self.substitution,
        )
    }
}

/// Constants.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct Const<I: Interner> {
    interned: I::InternedConst,
}

impl<I: Interner> Const<I> {
    /// Create a `Const` using something that can be cast to const data.
    pub fn new(interner: I, data: impl CastTo<ConstData<I>>) -> Self {
        Const {
            interned: I::intern_const(interner, data.cast(interner)),
        }
    }

    /// Gets the interned constant.
    pub fn interned(&self) -> &I::InternedConst {
        &self.interned
    }

    /// Gets the constant data from the interner.
    pub fn data(&self, interner: I) -> &ConstData<I> {
        I::const_data(interner, &self.interned)
    }

    /// If this is a `ConstData::BoundVar(d)`, returns `Some(d)` else `None`.
    pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
        if let ConstValue::BoundVar(bv) = &self.data(interner).value {
            Some(*bv)
        } else {
            None
        }
    }

    /// If this is a `ConstData::InferenceVar(d)`, returns `Some(d)` else `None`.
    pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
        if let ConstValue::InferenceVar(iv) = &self.data(interner).value {
            Some(*iv)
        } else {
            None
        }
    }

    /// True if this const is a "bound" const, and hence
    /// needs to be shifted across binders. Meant for debug assertions.
    pub fn needs_shift(&self, interner: I) -> bool {
        match &self.data(interner).value {
            ConstValue::BoundVar(_) => true,
            ConstValue::InferenceVar(_) => false,
            ConstValue::Placeholder(_) => false,
            ConstValue::Concrete(_) => false,
        }
    }
}

/// Constant data, containing the constant's type and value.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub struct ConstData<I: Interner> {
    /// Type that holds the constant.
    pub ty: Ty<I>,
    /// The value of the constant.
    pub value: ConstValue<I>,
}

/// A constant value, not necessarily concrete.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub enum ConstValue<I: Interner> {
    /// Bound var (e.g. a parameter).
    BoundVar(BoundVar),
    /// Constant whose value is being inferred.
    InferenceVar(InferenceVar),
    /// Lifetime on some yet-unknown placeholder.
    Placeholder(PlaceholderIndex),
    /// Concrete constant value.
    Concrete(ConcreteConst<I>),
}

impl<I: Interner> Copy for ConstValue<I> where I::InternedConcreteConst: Copy {}

impl<I: Interner> ConstData<I> {
    /// Wraps the constant data in a `Const`.
    pub fn intern(self, interner: I) -> Const<I> {
        Const::new(interner, self)
    }
}

/// Concrete constant, whose value is known (as opposed to
/// inferred constants and placeholders).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct ConcreteConst<I: Interner> {
    /// The interned constant.
    pub interned: I::InternedConcreteConst,
}

impl<I: Interner> ConcreteConst<I> {
    /// Checks whether two concrete constants are equal.
    pub fn const_eq(&self, ty: &Ty<I>, other: &ConcreteConst<I>, interner: I) -> bool {
        interner.const_eq(&ty.interned, &self.interned, &other.interned)
    }
}

/// A Rust lifetime.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct Lifetime<I: Interner> {
    interned: I::InternedLifetime,
}

impl<I: Interner> Lifetime<I> {
    /// Create a lifetime from lifetime data
    /// (or something that can be cast to lifetime data).
    pub fn new(interner: I, data: impl CastTo<LifetimeData<I>>) -> Self {
        Lifetime {
            interned: I::intern_lifetime(interner, data.cast(interner)),
        }
    }

    /// Gets the interned value.
    pub fn interned(&self) -> &I::InternedLifetime {
        &self.interned
    }

    /// Gets the lifetime data.
    pub fn data(&self, interner: I) -> &LifetimeData<I> {
        I::lifetime_data(interner, &self.interned)
    }

    /// If this is a `Lifetime::BoundVar(d)`, returns `Some(d)` else `None`.
    pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
        if let LifetimeData::BoundVar(bv) = self.data(interner) {
            Some(*bv)
        } else {
            None
        }
    }

    /// If this is a `Lifetime::InferenceVar(d)`, returns `Some(d)` else `None`.
    pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
        if let LifetimeData::InferenceVar(depth) = self.data(interner) {
            Some(*depth)
        } else {
            None
        }
    }

    /// True if this lifetime is a "bound" lifetime, and hence
    /// needs to be shifted across binders. Meant for debug assertions.
    pub fn needs_shift(&self, interner: I) -> bool {
        match self.data(interner) {
            LifetimeData::BoundVar(_) => true,
            LifetimeData::InferenceVar(_) => false,
            LifetimeData::Placeholder(_) => false,
            LifetimeData::Static => false,
            LifetimeData::Erased => false,
            LifetimeData::Error => false,
            LifetimeData::Phantom(..) => unreachable!(),
        }
    }

    ///compute type flags for Lifetime
    fn compute_flags(&self, interner: I) -> TypeFlags {
        match self.data(interner) {
            LifetimeData::InferenceVar(_) => {
                TypeFlags::HAS_RE_INFER
                    | TypeFlags::HAS_FREE_LOCAL_REGIONS
                    | TypeFlags::HAS_FREE_REGIONS
            }
            LifetimeData::Placeholder(_) => {
                TypeFlags::HAS_RE_PLACEHOLDER
                    | TypeFlags::HAS_FREE_LOCAL_REGIONS
                    | TypeFlags::HAS_FREE_REGIONS
            }
            LifetimeData::Static => TypeFlags::HAS_FREE_REGIONS,
            LifetimeData::Phantom(_, _) => TypeFlags::empty(),
            LifetimeData::BoundVar(_) => TypeFlags::HAS_RE_LATE_BOUND,
            LifetimeData::Erased => TypeFlags::HAS_RE_ERASED,
            LifetimeData::Error => TypeFlags::HAS_RE_ERROR,
        }
    }
}

/// Lifetime data, including what kind of lifetime it is and what it points to.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub enum LifetimeData<I: Interner> {
    /// See TyKind::BoundVar.
    BoundVar(BoundVar),
    /// Lifetime whose value is being inferred.
    InferenceVar(InferenceVar),
    /// Lifetime on some yet-unknown placeholder.
    Placeholder(PlaceholderIndex),
    /// Static lifetime
    Static,
    /// An erased lifetime, used by rustc to improve caching when we doesn't
    /// care about lifetimes
    Erased,
    /// Lifetime on phantom data.
    Phantom(Void, PhantomData<I>),
    /// A lifetime that resulted from some error
    Error,
}

impl<I: Interner> LifetimeData<I> {
    /// Wrap the lifetime data in a lifetime.
    pub fn intern(self, interner: I) -> Lifetime<I> {
        Lifetime::new(interner, self)
    }
}

/// Index of an universally quantified parameter in the environment.
/// Two indexes are required, the one of the universe itself
/// and the relative index inside the universe.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PlaceholderIndex {
    /// Index *of* the universe.
    pub ui: UniverseIndex,
    /// Index *in* the universe.
    pub idx: usize,
}

impl PlaceholderIndex {
    /// Wrap the placeholder instance in a lifetime.
    pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
        LifetimeData::<I>::Placeholder(self).intern(interner)
    }

    /// Create an interned type.
    pub fn to_ty<I: Interner>(self, interner: I) -> Ty<I> {
        TyKind::Placeholder(self).intern(interner)
    }

    /// Wrap the placeholder index in a constant.
    pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
        ConstData {
            ty,
            value: ConstValue::Placeholder(self),
        }
        .intern(interner)
    }
}
/// Represents some extra knowledge we may have about the type variable.
/// ```ignore
/// let x: &[u32];
/// let i = 1;
/// x[i]
/// ```
/// In this example, `i` is known to be some type of integer. We can infer that
/// it is `usize` because that is the only integer type that slices have an
/// `Index` impl for. `i` would have a `TyVariableKind` of `Integer` to guide the
/// inference process.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum TyVariableKind {
    General,
    Integer,
    Float,
}

/// The "kind" of variable. Type, lifetime or constant.
#[derive(Clone, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum VariableKind<I: Interner> {
    Ty(TyVariableKind),
    Lifetime,
    Const(Ty<I>),
}

impl<I: Interner> interner::HasInterner for VariableKind<I> {
    type Interner = I;
}

impl<I: Interner> Copy for VariableKind<I> where I::InternedType: Copy {}

impl<I: Interner> VariableKind<I> {
    fn to_bound_variable(&self, interner: I, bound_var: BoundVar) -> GenericArg<I> {
        match self {
            VariableKind::Ty(_) => {
                GenericArgData::Ty(TyKind::BoundVar(bound_var).intern(interner)).intern(interner)
            }
            VariableKind::Lifetime => {
                GenericArgData::Lifetime(LifetimeData::BoundVar(bound_var).intern(interner))
                    .intern(interner)
            }
            VariableKind::Const(ty) => GenericArgData::Const(
                ConstData {
                    ty: ty.clone(),
                    value: ConstValue::BoundVar(bound_var),
                }
                .intern(interner),
            )
            .intern(interner),
        }
    }
}

/// A generic argument, see `GenericArgData` for more information.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct GenericArg<I: Interner> {
    interned: I::InternedGenericArg,
}

impl<I: Interner> GenericArg<I> {
    /// Constructs a generic argument using `GenericArgData`.
    pub fn new(interner: I, data: GenericArgData<I>) -> Self {
        let interned = I::intern_generic_arg(interner, data);
        GenericArg { interned }
    }

    /// Gets the interned value.
    pub fn interned(&self) -> &I::InternedGenericArg {
        &self.interned
    }

    /// Gets the underlying data.
    pub fn data(&self, interner: I) -> &GenericArgData<I> {
        I::generic_arg_data(interner, &self.interned)
    }

    /// Asserts that this is a type argument.
    pub fn assert_ty_ref(&self, interner: I) -> &Ty<I> {
        self.ty(interner).unwrap()
    }

    /// Asserts that this is a lifetime argument.
    pub fn assert_lifetime_ref(&self, interner: I) -> &Lifetime<I> {
        self.lifetime(interner).unwrap()
    }

    /// Asserts that this is a constant argument.
    pub fn assert_const_ref(&self, interner: I) -> &Const<I> {
        self.constant(interner).unwrap()
    }

    /// Checks whether the generic argument is a type.
    pub fn is_ty(&self, interner: I) -> bool {
        match self.data(interner) {
            GenericArgData::Ty(_) => true,
            GenericArgData::Lifetime(_) => false,
            GenericArgData::Const(_) => false,
        }
    }

    /// Returns the type if it is one, `None` otherwise.
    pub fn ty(&self, interner: I) -> Option<&Ty<I>> {
        match self.data(interner) {
            GenericArgData::Ty(t) => Some(t),
            _ => None,
        }
    }

    /// Returns the lifetime if it is one, `None` otherwise.
    pub fn lifetime(&self, interner: I) -> Option<&Lifetime<I>> {
        match self.data(interner) {
            GenericArgData::Lifetime(t) => Some(t),
            _ => None,
        }
    }

    /// Returns the constant if it is one, `None` otherwise.
    pub fn constant(&self, interner: I) -> Option<&Const<I>> {
        match self.data(interner) {
            GenericArgData::Const(c) => Some(c),
            _ => None,
        }
    }

    /// Compute type flags for GenericArg<I>
    fn compute_flags(&self, interner: I) -> TypeFlags {
        match self.data(interner) {
            GenericArgData::Ty(ty) => ty.data(interner).flags,
            GenericArgData::Lifetime(lifetime) => lifetime.compute_flags(interner),
            GenericArgData::Const(constant) => {
                let data = constant.data(interner);
                let flags = data.ty.data(interner).flags;
                match data.value {
                    ConstValue::BoundVar(_) => flags,
                    ConstValue::InferenceVar(_) => {
                        flags | TypeFlags::HAS_CT_INFER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
                    }
                    ConstValue::Placeholder(_) => {
                        flags
                            | TypeFlags::HAS_CT_PLACEHOLDER
                            | TypeFlags::STILL_FURTHER_SPECIALIZABLE
                    }
                    ConstValue::Concrete(_) => flags,
                }
            }
        }
    }
}

/// Generic arguments data.
#[derive(Clone, PartialEq, Eq, Hash, TypeVisitable, TypeFoldable, Zip)]
pub enum GenericArgData<I: Interner> {
    /// Type argument
    Ty(Ty<I>),
    /// Lifetime argument
    Lifetime(Lifetime<I>),
    /// Constant argument
    Const(Const<I>),
}

impl<I: Interner> Copy for GenericArgData<I>
where
    I::InternedType: Copy,
    I::InternedLifetime: Copy,
    I::InternedConst: Copy,
{
}

impl<I: Interner> GenericArgData<I> {
    /// Create an interned type.
    pub fn intern(self, interner: I) -> GenericArg<I> {
        GenericArg::new(interner, self)
    }
}

/// A value with an associated variable kind.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct WithKind<I: Interner, T> {
    /// The associated variable kind.
    pub kind: VariableKind<I>,
    /// The wrapped value.
    value: T,
}

impl<I: Interner, T: Copy> Copy for WithKind<I, T> where I::InternedType: Copy {}

impl<I: Interner, T> HasInterner for WithKind<I, T> {
    type Interner = I;
}

impl<I: Interner, T> From<WithKind<I, T>> for (VariableKind<I>, T) {
    fn from(with_kind: WithKind<I, T>) -> Self {
        (with_kind.kind, with_kind.value)
    }
}

impl<I: Interner, T> WithKind<I, T> {
    /// Creates a `WithKind` from a variable kind and a value.
    pub fn new(kind: VariableKind<I>, value: T) -> Self {
        Self { kind, value }
    }

    /// Maps the value in `WithKind`.
    pub fn map<U, OP>(self, op: OP) -> WithKind<I, U>
    where
        OP: FnOnce(T) -> U,
    {
        WithKind {
            kind: self.kind,
            value: op(self.value),
        }
    }

    /// Maps a function taking `WithKind<I, &T>` over `&WithKind<I, T>`.
    pub fn map_ref<U, OP>(&self, op: OP) -> WithKind<I, U>
    where
        OP: FnOnce(&T) -> U,
    {
        WithKind {
            kind: self.kind.clone(),
            value: op(&self.value),
        }
    }

    /// Extract the value, ignoring the variable kind.
    pub fn skip_kind(&self) -> &T {
        &self.value
    }
}

/// A variable kind with universe index.
#[allow(type_alias_bounds)]
pub type CanonicalVarKind<I: Interner> = WithKind<I, UniverseIndex>;

/// An alias, which is a trait indirection such as a projection or opaque type.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum AliasTy<I: Interner> {
    /// An associated type projection.
    Projection(ProjectionTy<I>),
    /// An opaque type.
    Opaque(OpaqueTy<I>),
}

impl<I: Interner> Copy for AliasTy<I> where I::InternedSubstitution: Copy {}

impl<I: Interner> AliasTy<I> {
    /// Create an interned type for this alias.
    pub fn intern(self, interner: I) -> Ty<I> {
        Ty::new(interner, self)
    }

    /// Compute type flags for aliases
    fn compute_flags(&self, interner: I) -> TypeFlags {
        match self {
            AliasTy::Projection(projection_ty) => {
                TypeFlags::HAS_TY_PROJECTION | projection_ty.substitution.compute_flags(interner)
            }
            AliasTy::Opaque(opaque_ty) => {
                TypeFlags::HAS_TY_OPAQUE | opaque_ty.substitution.compute_flags(interner)
            }
        }
    }
}

/// A projection `<P0 as TraitName<P1..Pn>>::AssocItem<Pn+1..Pm>`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct ProjectionTy<I: Interner> {
    /// The id for the associated type member.
    pub associated_ty_id: AssocTypeId<I>,
    /// The substitution for the projection.
    pub substitution: Substitution<I>,
}

impl<I: Interner> Copy for ProjectionTy<I> where I::InternedSubstitution: Copy {}

/// An opaque type `opaque type T<..>: Trait = HiddenTy`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct OpaqueTy<I: Interner> {
    /// The id for the opaque type.
    pub opaque_ty_id: OpaqueTyId<I>,
    /// The substitution for the opaque type.
    pub substitution: Substitution<I>,
}

impl<I: Interner> Copy for OpaqueTy<I> where I::InternedSubstitution: Copy {}

/// A trait reference describes the relationship between a type and a trait.
/// This can be used in two forms:
/// - `P0: Trait<P1..Pn>` (e.g. `i32: Copy`), which mentions that the type
///   implements the trait.
/// - `<P0 as Trait<P1..Pn>>` (e.g. `i32 as Copy`), which casts the type to
///   that specific trait.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct TraitRef<I: Interner> {
    /// The trait id.
    pub trait_id: TraitId<I>,
    /// The substitution, containing both the `Self` type and the parameters.
    pub substitution: Substitution<I>,
}

impl<I: Interner> Copy for TraitRef<I> where I::InternedSubstitution: Copy {}

impl<I: Interner> TraitRef<I> {
    /// Gets all type parameters in this trait ref, including `Self`.
    pub fn type_parameters(&self, interner: I) -> impl Iterator<Item = Ty<I>> + '_ {
        self.substitution
            .iter(interner)
            .filter_map(move |p| p.ty(interner))
            .cloned()
    }

    /// Gets the type parameters of the `Self` type in this trait ref.
    pub fn self_type_parameter(&self, interner: I) -> Ty<I> {
        self.type_parameters(interner).next().unwrap()
    }

    /// Construct a `FromEnv` using this trait ref.
    pub fn from_env(self) -> FromEnv<I> {
        FromEnv::Trait(self)
    }

    /// Construct a `WellFormed` using this trait ref.
    pub fn well_formed(self) -> WellFormed<I> {
        WellFormed::Trait(self)
    }
}

/// Lifetime outlives, which for `'a: 'b`` checks that the lifetime `'a`
/// is a superset of the value of `'b`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
#[allow(missing_docs)]
pub struct LifetimeOutlives<I: Interner> {
    pub a: Lifetime<I>,
    pub b: Lifetime<I>,
}

impl<I: Interner> Copy for LifetimeOutlives<I> where I::InternedLifetime: Copy {}

/// Type outlives, which for `T: 'a` checks that the type `T`
/// lives at least as long as the lifetime `'a`
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub struct TypeOutlives<I: Interner> {
    /// The type which must outlive the given lifetime.
    pub ty: Ty<I>,
    /// The lifetime which the type must outlive.
    pub lifetime: Lifetime<I>,
}

impl<I: Interner> Copy for TypeOutlives<I>
where
    I::InternedLifetime: Copy,
    I::InternedType: Copy,
{
}

/// Where clauses that can be written by a Rust programmer.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeSuperVisitable, HasInterner, Zip)]
pub enum WhereClause<I: Interner> {
    /// Type implements a trait.
    Implemented(TraitRef<I>),
    /// Type is equal to an alias.
    AliasEq(AliasEq<I>),
    /// One lifetime outlives another.
    LifetimeOutlives(LifetimeOutlives<I>),
    /// Type outlives a lifetime.
    TypeOutlives(TypeOutlives<I>),
}

impl<I: Interner> Copy for WhereClause<I>
where
    I::InternedSubstitution: Copy,
    I::InternedLifetime: Copy,
    I::InternedType: Copy,
{
}

/// Checks whether a type or trait ref is well-formed.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum WellFormed<I: Interner> {
    /// A predicate which is true when some trait ref is well-formed.
    /// For example, given the following trait definitions:
    ///
    /// ```notrust
    /// trait Clone { ... }
    /// trait Copy where Self: Clone { ... }
    /// ```
    ///
    /// then we have the following rule:
    ///
    /// ```notrust
    /// WellFormed(?Self: Copy) :- ?Self: Copy, WellFormed(?Self: Clone)
    /// ```
    Trait(TraitRef<I>),

    /// A predicate which is true when some type is well-formed.
    /// For example, given the following type definition:
    ///
    /// ```notrust
    /// struct Set<K> where K: Hash {
    ///     ...
    /// }
    /// ```
    ///
    /// then we have the following rule: `WellFormedTy(Set<K>) :- Implemented(K: Hash)`.
    Ty(Ty<I>),
}

impl<I: Interner> Copy for WellFormed<I>
where
    I::InternedType: Copy,
    I::InternedSubstitution: Copy,
{
}

/// Checks whether a type or trait ref can be derived from the contents of the environment.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum FromEnv<I: Interner> {
    /// A predicate which enables deriving everything which should be true if we *know* that
    /// some trait ref is well-formed. For example given the above trait definitions, we can use
    /// `FromEnv(T: Copy)` to derive that `T: Clone`, like in:
    ///
    /// ```notrust
    /// forall<T> {
    ///     if (FromEnv(T: Copy)) {
    ///         T: Clone
    ///     }
    /// }
    /// ```
    Trait(TraitRef<I>),

    /// A predicate which enables deriving everything which should be true if we *know* that
    /// some type is well-formed. For example given the above type definition, we can use
    /// `FromEnv(Set<K>)` to derive that `K: Hash`, like in:
    ///
    /// ```notrust
    /// forall<K> {
    ///     if (FromEnv(Set<K>)) {
    ///         K: Hash
    ///     }
    /// }
    /// ```
    Ty(Ty<I>),
}

impl<I: Interner> Copy for FromEnv<I>
where
    I::InternedType: Copy,
    I::InternedSubstitution: Copy,
{
}

/// A "domain goal" is a goal that is directly about Rust, rather than a pure
/// logical statement. As much as possible, the Chalk solver should avoid
/// decomposing this enum, and instead treat its values opaquely.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeSuperVisitable, HasInterner, Zip)]
pub enum DomainGoal<I: Interner> {
    /// Simple goal that is true if the where clause is true.
    Holds(WhereClause<I>),

    /// True if the type or trait ref is well-formed.
    WellFormed(WellFormed<I>),

    /// True if the trait ref can be derived from in-scope where clauses.
    FromEnv(FromEnv<I>),

    /// True if the alias type can be normalized to some other type
    Normalize(Normalize<I>),

    /// True if a type is considered to have been "defined" by the current crate. This is true for
    /// a `struct Foo { }` but false for a `#[upstream] struct Foo { }`. However, for fundamental types
    /// like `Box<T>`, it is true if `T` is local.
    IsLocal(Ty<I>),

    /// True if a type is *not* considered to have been "defined" by the current crate. This is
    /// false for a `struct Foo { }` but true for a `#[upstream] struct Foo { }`. However, for
    /// fundamental types like `Box<T>`, it is true if `T` is upstream.
    IsUpstream(Ty<I>),

    /// True if a type and its input types are fully visible, known types. That is, there are no
    /// unknown type parameters anywhere in this type.
    ///
    /// More formally, for each struct S<P0..Pn>:
    /// forall<P0..Pn> {
    ///     IsFullyVisible(S<P0...Pn>) :-
    ///         IsFullyVisible(P0),
    ///         ...
    ///         IsFullyVisible(Pn)
    /// }
    ///
    /// Note that any of these types can have lifetimes in their parameters too, but we only
    /// consider type parameters.
    IsFullyVisible(Ty<I>),

    /// Used to dictate when trait impls are allowed in the current (local) crate based on the
    /// orphan rules.
    ///
    /// `LocalImplAllowed(T: Trait)` is true if the type T is allowed to impl trait Trait in
    /// the current crate. Under the current rules, this is unconditionally true for all types if
    /// the Trait is considered to be "defined" in the current crate. If that is not the case, then
    /// `LocalImplAllowed(T: Trait)` can still be true if `IsLocal(T)` is true.
    LocalImplAllowed(TraitRef<I>),

    /// Used to activate the "compatible modality" rules. Rules that introduce predicates that have
    /// to do with "all compatible universes" should depend on this clause so that they only apply
    /// if this is present.
    Compatible,

    /// Used to indicate that a given type is in a downstream crate. Downstream crates contain the
    /// current crate at some level of their dependencies.
    ///
    /// Since chalk does not actually see downstream types, this is usually introduced with
    /// implication on a fresh, universally quantified type.
    ///
    /// forall<T> { if (DownstreamType(T)) { /* ... */ } }
    ///
    /// This makes a new type `T` available and makes `DownstreamType(T)` provable for that type.
    DownstreamType(Ty<I>),

    /// Used to activate the "reveal mode", in which opaque (`impl Trait`) types can be equated
    /// to their actual type.
    Reveal,

    /// Used to indicate that a trait is object safe.
    ObjectSafe(TraitId<I>),
}

impl<I: Interner> Copy for DomainGoal<I>
where
    I::InternedSubstitution: Copy,
    I::InternedLifetime: Copy,
    I::InternedType: Copy,
{
}

/// A where clause that can contain `forall<>` or `exists<>` quantifiers.
pub type QuantifiedWhereClause<I> = Binders<WhereClause<I>>;

impl<I: Interner> WhereClause<I> {
    /// Turn a where clause into the WF version of it i.e.:
    /// * `Implemented(T: Trait)` maps to `WellFormed(T: Trait)`
    /// * `ProjectionEq(<T as Trait>::Item = Foo)` maps to `WellFormed(<T as Trait>::Item = Foo)`
    /// * any other clause maps to itself
    pub fn into_well_formed_goal(self, interner: I) -> DomainGoal<I> {
        match self {
            WhereClause::Implemented(trait_ref) => WellFormed::Trait(trait_ref).cast(interner),
            wc => wc.cast(interner),
        }
    }

    /// Same as `into_well_formed_goal` but with the `FromEnv` predicate instead of `WellFormed`.
    pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
        match self {
            WhereClause::Implemented(trait_ref) => FromEnv::Trait(trait_ref).cast(interner),
            wc => wc.cast(interner),
        }
    }

    /// If where clause is a `TraitRef`, returns its trait id.
    pub fn trait_id(&self) -> Option<TraitId<I>> {
        match self {
            WhereClause::Implemented(trait_ref) => Some(trait_ref.trait_id),
            WhereClause::AliasEq(_) => None,
            WhereClause::LifetimeOutlives(_) => None,
            WhereClause::TypeOutlives(_) => None,
        }
    }
}

impl<I: Interner> QuantifiedWhereClause<I> {
    /// As with `WhereClause::into_well_formed_goal`, but for a
    /// quantified where clause. For example, `forall<T> {
    /// Implemented(T: Trait)}` would map to `forall<T> {
    /// WellFormed(T: Trait) }`.
    pub fn into_well_formed_goal(self, interner: I) -> Binders<DomainGoal<I>> {
        self.map(|wc| wc.into_well_formed_goal(interner))
    }

    /// As with `WhereClause::into_from_env_goal`, but mapped over any
    /// binders. For example, `forall<T> {
    /// Implemented(T: Trait)}` would map to `forall<T> {
    /// FromEnv(T: Trait) }`.
    pub fn into_from_env_goal(self, interner: I) -> Binders<DomainGoal<I>> {
        self.map(|wc| wc.into_from_env_goal(interner))
    }

    /// If the underlying where clause is a `TraitRef`, returns its trait id.
    pub fn trait_id(&self) -> Option<TraitId<I>> {
        self.skip_binders().trait_id()
    }
}

impl<I: Interner> DomainGoal<I> {
    /// Convert `Implemented(...)` into `FromEnv(...)`, but leave other
    /// goals unchanged.
    pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
        match self {
            DomainGoal::Holds(wc) => wc.into_from_env_goal(interner),
            goal => goal,
        }
    }

    /// Lists generic arguments that are inputs to this domain goal.
    pub fn inputs(&self, interner: I) -> Vec<GenericArg<I>> {
        match self {
            DomainGoal::Holds(WhereClause::AliasEq(alias_eq)) => {
                vec![GenericArgData::Ty(alias_eq.alias.clone().intern(interner)).intern(interner)]
            }
            _ => Vec::new(),
        }
    }
}

/// Equality goal: tries to prove that two values are equal.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct EqGoal<I: Interner> {
    pub a: GenericArg<I>,
    pub b: GenericArg<I>,
}

impl<I: Interner> Copy for EqGoal<I> where I::InternedGenericArg: Copy {}

/// Subtype goal: tries to prove that `a` is a subtype of `b`
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct SubtypeGoal<I: Interner> {
    pub a: Ty<I>,
    pub b: Ty<I>,
}

impl<I: Interner> Copy for SubtypeGoal<I> where I::InternedType: Copy {}

/// Proves that the given type alias **normalizes** to the given
/// type. A projection `T::Foo` normalizes to the type `U` if we can
/// **match it to an impl** and that impl has a `type Foo = V` where
/// `U = V`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct Normalize<I: Interner> {
    pub alias: AliasTy<I>,
    pub ty: Ty<I>,
}

impl<I: Interner> Copy for Normalize<I>
where
    I::InternedSubstitution: Copy,
    I::InternedType: Copy,
{
}

/// Proves **equality** between an alias and a type.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct AliasEq<I: Interner> {
    pub alias: AliasTy<I>,
    pub ty: Ty<I>,
}

impl<I: Interner> Copy for AliasEq<I>
where
    I::InternedSubstitution: Copy,
    I::InternedType: Copy,
{
}

impl<I: Interner> HasInterner for AliasEq<I> {
    type Interner = I;
}

/// Indicates that the `value` is universally quantified over `N`
/// parameters of the given kinds, where `N == self.binders.len()`. A
/// variable with depth `i < N` refers to the value at
/// `self.binders[i]`. Variables with depth `>= N` are free.
///
/// (IOW, we use deBruijn indices, where binders are introduced in reverse order
/// of `self.binders`.)
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Binders<T: HasInterner> {
    /// The binders that quantify over the value.
    pub binders: VariableKinds<T::Interner>,

    /// The value being quantified over.
    value: T,
}

impl<T: HasInterner + Copy> Copy for Binders<T> where
    <T::Interner as Interner>::InternedVariableKinds: Copy
{
}

impl<T: HasInterner> HasInterner for Binders<T> {
    type Interner = T::Interner;
}

impl<T: Clone + HasInterner> Binders<&T> {
    /// Converts a `Binders<&T>` to a `Binders<T>` by cloning `T`.
    pub fn cloned(self) -> Binders<T> {
        self.map(Clone::clone)
    }
}

impl<T: HasInterner> Binders<T> {
    /// Create new binders.
    pub fn new(binders: VariableKinds<T::Interner>, value: T) -> Self {
        Self { binders, value }
    }

    /// Wraps the given value in a binder without variables, i.e. `for<>
    /// (value)`. Since our deBruijn indices count binders, not variables, this
    /// is sometimes useful.
    pub fn empty(interner: T::Interner, value: T) -> Self {
        let binders = VariableKinds::empty(interner);
        Self { binders, value }
    }

    /// Skips the binder and returns the "bound" value. This is a
    /// risky thing to do because it's easy to get confused about
    /// De Bruijn indices and the like. `skip_binder` is only valid
    /// when you are either extracting data that has nothing to
    /// do with bound vars, or you are being very careful about
    /// your depth accounting.
    ///
    /// Some examples where `skip_binder` is reasonable:
    ///
    /// - extracting the `TraitId` from a TraitRef;
    /// - checking if there are any fields in a StructDatum
    pub fn skip_binders(&self) -> &T {
        &self.value
    }

    /// Skips the binder and returns the "bound" value as well as the skipped free variables. This
    /// is just as risky as [`skip_binders`][Self::skip_binders].
    pub fn into_value_and_skipped_binders(self) -> (T, VariableKinds<T::Interner>) {
        (self.value, self.binders)
    }

    /// Converts `&Binders<T>` to `Binders<&T>`. Produces new `Binders`
    /// with cloned quantifiers containing a reference to the original
    /// value, leaving the original in place.
    pub fn as_ref(&self) -> Binders<&T> {
        Binders {
            binders: self.binders.clone(),
            value: &self.value,
        }
    }

    /// Maps the binders by applying a function.
    pub fn map<U, OP>(self, op: OP) -> Binders<U>
    where
        OP: FnOnce(T) -> U,
        U: HasInterner<Interner = T::Interner>,
    {
        let value = op(self.value);
        Binders {
            binders: self.binders,
            value,
        }
    }

    /// Transforms the inner value according to the given function; returns
    /// `None` if the function returns `None`.
    pub fn filter_map<U, OP>(self, op: OP) -> Option<Binders<U>>
    where
        OP: FnOnce(T) -> Option<U>,
        U: HasInterner<Interner = T::Interner>,
    {
        let value = op(self.value)?;
        Some(Binders {
            binders: self.binders,
            value,
        })
    }

    /// Maps a function taking `Binders<&T>` over `&Binders<T>`.
    pub fn map_ref<'a, U, OP>(&'a self, op: OP) -> Binders<U>
    where
        OP: FnOnce(&'a T) -> U,
        U: HasInterner<Interner = T::Interner>,
    {
        self.as_ref().map(op)
    }

    /// Creates a `Substitution` containing bound vars such that applying this
    /// substitution will not change the value, i.e. `^0.0, ^0.1, ^0.2` and so
    /// on.
    pub fn identity_substitution(&self, interner: T::Interner) -> Substitution<T::Interner> {
        Substitution::from_iter(
            interner,
            self.binders
                .iter(interner)
                .enumerate()
                .map(|p| p.to_generic_arg(interner)),
        )
    }

    /// Creates a fresh binders that contains a single type
    /// variable. The result of the closure will be embedded in this
    /// binder. Note that you should be careful with what you return
    /// from the closure to account for the binder that will be added.
    ///
    /// XXX FIXME -- this is potentially a pretty footgun-y function.
    pub fn with_fresh_type_var(
        interner: T::Interner,
        op: impl FnOnce(Ty<T::Interner>) -> T,
    ) -> Binders<T> {
        // The new variable is at the front and everything afterwards is shifted up by 1
        let new_var = TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)).intern(interner);
        let value = op(new_var);
        let binders = VariableKinds::from1(interner, VariableKind::Ty(TyVariableKind::General));
        Binders { binders, value }
    }

    /// Returns the number of binders.
    pub fn len(&self, interner: T::Interner) -> usize {
        self.binders.len(interner)
    }
}

impl<T, I> Binders<Binders<T>>
where
    T: TypeFoldable<I> + HasInterner<Interner = I>,
    I: Interner,
{
    /// This turns two levels of binders (`for<A> for<B>`) into one level (`for<A, B>`).
    pub fn fuse_binders(self, interner: T::Interner) -> Binders<T> {
        let num_binders = self.len(interner);
        // generate a substitution to shift the indexes of the inner binder:
        let subst = Substitution::from_iter(
            interner,
            self.value
                .binders
                .iter(interner)
                .enumerate()
                .map(|(i, pk)| (i + num_binders, pk).to_generic_arg(interner)),
        );
        let binders = VariableKinds::from_iter(
            interner,
            self.binders
                .iter(interner)
                .chain(self.value.binders.iter(interner))
                .cloned(),
        );
        let value = self.value.substitute(interner, &subst);
        Binders { binders, value }
    }
}

impl<T: HasInterner> From<Binders<T>> for (VariableKinds<T::Interner>, T) {
    fn from(binders: Binders<T>) -> Self {
        (binders.binders, binders.value)
    }
}

impl<T, I> Binders<T>
where
    T: TypeFoldable<I> + HasInterner<Interner = I>,
    I: Interner,
{
    /// Substitute `parameters` for the variables introduced by these
    /// binders. So if the binders represent (e.g.) `<X, Y> { T }` and
    /// parameters is the slice `[A, B]`, then returns `[X => A, Y =>
    /// B] T`.
    pub fn substitute(self, interner: I, parameters: &(impl AsParameters<I> + ?Sized)) -> T {
        let parameters = parameters.as_parameters(interner);
        assert_eq!(self.binders.len(interner), parameters.len());
        Subst::apply(interner, parameters, self.value)
    }
}

/// Allows iterating over a Binders<Vec<T>>, for instance.
/// Each element will include the same set of parameter bounds.
impl<V, U> IntoIterator for Binders<V>
where
    V: HasInterner + IntoIterator<Item = U>,
    U: HasInterner<Interner = V::Interner>,
{
    type Item = Binders<U>;
    type IntoIter = BindersIntoIterator<V>;

    fn into_iter(self) -> Self::IntoIter {
        BindersIntoIterator {
            iter: self.value.into_iter(),
            binders: self.binders,
        }
    }
}

/// `IntoIterator` for binders.
pub struct BindersIntoIterator<V: HasInterner + IntoIterator> {
    iter: <V as IntoIterator>::IntoIter,
    binders: VariableKinds<V::Interner>,
}

impl<V> Iterator for BindersIntoIterator<V>
where
    V: HasInterner + IntoIterator,
    <V as IntoIterator>::Item: HasInterner<Interner = V::Interner>,
{
    type Item = Binders<<V as IntoIterator>::Item>;
    fn next(&mut self) -> Option<Self::Item> {
        self.iter
            .next()
            .map(|v| Binders::new(self.binders.clone(), v))
    }
}

/// Represents one clause of the form `consequence :- conditions` where
/// `conditions = cond_1 && cond_2 && ...` is the conjunction of the individual
/// conditions.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub struct ProgramClauseImplication<I: Interner> {
    /// The consequence of the clause, which holds if the conditions holds.
    pub consequence: DomainGoal<I>,

    /// The condition goals that should hold.
    pub conditions: Goals<I>,

    /// The lifetime constraints that should be proven.
    pub constraints: Constraints<I>,

    /// The relative priority of the implication.
    pub priority: ClausePriority,
}

/// Specifies how important an implication is.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum ClausePriority {
    /// High priority, the solver should prioritize this.
    High,

    /// Low priority, this implication has lower chance to be relevant to the goal.
    Low,
}

impl std::ops::BitAnd for ClausePriority {
    type Output = ClausePriority;
    fn bitand(self, rhs: ClausePriority) -> Self::Output {
        match (self, rhs) {
            (ClausePriority::High, ClausePriority::High) => ClausePriority::High,
            _ => ClausePriority::Low,
        }
    }
}

/// Contains the data for a program clause.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, HasInterner, Zip)]
pub struct ProgramClauseData<I: Interner>(pub Binders<ProgramClauseImplication<I>>);

impl<I: Interner> ProgramClauseImplication<I> {
    /// Change the implication into an application holding a `FromEnv` goal.
    pub fn into_from_env_clause(self, interner: I) -> ProgramClauseImplication<I> {
        if self.conditions.is_empty(interner) {
            ProgramClauseImplication {
                consequence: self.consequence.into_from_env_goal(interner),
                conditions: self.conditions.clone(),
                constraints: self.constraints.clone(),
                priority: self.priority,
            }
        } else {
            self
        }
    }
}

impl<I: Interner> ProgramClauseData<I> {
    /// Change the program clause data into a `FromEnv` program clause.
    pub fn into_from_env_clause(self, interner: I) -> ProgramClauseData<I> {
        ProgramClauseData(self.0.map(|i| i.into_from_env_clause(interner)))
    }

    /// Intern the program clause data.
    pub fn intern(self, interner: I) -> ProgramClause<I> {
        ProgramClause {
            interned: interner.intern_program_clause(self),
        }
    }
}

/// A program clause is a logic expression used to describe a part of the program.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct ProgramClause<I: Interner> {
    interned: I::InternedProgramClause,
}

impl<I: Interner> ProgramClause<I> {
    /// Create a new program clause using `ProgramClauseData`.
    pub fn new(interner: I, clause: ProgramClauseData<I>) -> Self {
        let interned = interner.intern_program_clause(clause);
        Self { interned }
    }

    /// Change the clause into a `FromEnv` clause.
    pub fn into_from_env_clause(self, interner: I) -> ProgramClause<I> {
        let program_clause_data = self.data(interner);
        let new_clause = program_clause_data.clone().into_from_env_clause(interner);
        Self::new(interner, new_clause)
    }

    /// Get the interned program clause.
    pub fn interned(&self) -> &I::InternedProgramClause {
        &self.interned
    }

    /// Get the program clause data.
    pub fn data(&self, interner: I) -> &ProgramClauseData<I> {
        interner.program_clause_data(&self.interned)
    }
}

/// Wraps a "canonicalized item". Items are canonicalized as follows:
///
/// All unresolved existential variables are "renumbered" according to their
/// first appearance; the kind/universe of the variable is recorded in the
/// `binders` field.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Canonical<T: HasInterner> {
    /// The item that is canonicalized.
    pub value: T,

    /// The kind/universe of the variable.
    pub binders: CanonicalVarKinds<T::Interner>,
}

impl<T: HasInterner> HasInterner for Canonical<T> {
    type Interner = T::Interner;
}

/// A "universe canonical" value. This is a wrapper around a
/// `Canonical`, indicating that the universes within have been
/// "renumbered" to start from 0 and collapse unimportant
/// distinctions.
///
/// To produce one of these values, use the `u_canonicalize` method.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct UCanonical<T: HasInterner> {
    /// The wrapped `Canonical`.
    pub canonical: Canonical<T>,

    /// The number of universes that have been collapsed.
    pub universes: usize,
}

impl<T: HasInterner> UCanonical<T> {
    /// Checks whether the universe canonical value is a trivial
    /// substitution (e.g. an identity substitution).
    pub fn is_trivial_substitution(
        &self,
        interner: T::Interner,
        canonical_subst: &Canonical<AnswerSubst<T::Interner>>,
    ) -> bool {
        let subst = &canonical_subst.value.subst;
        assert_eq!(
            self.canonical.binders.len(interner),
            subst.as_slice(interner).len()
        );
        subst.is_identity_subst(interner)
    }

    /// Creates an identity substitution.
    pub fn trivial_substitution(&self, interner: T::Interner) -> Substitution<T::Interner> {
        let binders = &self.canonical.binders;
        Substitution::from_iter(
            interner,
            binders
                .iter(interner)
                .enumerate()
                .map(|(index, pk)| {
                    let bound_var = BoundVar::new(DebruijnIndex::INNERMOST, index);
                    match &pk.kind {
                        VariableKind::Ty(_) => {
                            GenericArgData::Ty(TyKind::BoundVar(bound_var).intern(interner))
                                .intern(interner)
                        }
                        VariableKind::Lifetime => GenericArgData::Lifetime(
                            LifetimeData::BoundVar(bound_var).intern(interner),
                        )
                        .intern(interner),
                        VariableKind::Const(ty) => GenericArgData::Const(
                            ConstData {
                                ty: ty.clone(),
                                value: ConstValue::BoundVar(bound_var),
                            }
                            .intern(interner),
                        )
                        .intern(interner),
                    }
                })
                .collect::<Vec<_>>(),
        )
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
/// A general goal; this is the full range of questions you can pose to Chalk.
pub struct Goal<I: Interner> {
    interned: I::InternedGoal,
}

impl<I: Interner> Goal<I> {
    /// Create a new goal using `GoalData`.
    pub fn new(interner: I, interned: GoalData<I>) -> Self {
        let interned = I::intern_goal(interner, interned);
        Self { interned }
    }

    /// Gets the interned goal.
    pub fn interned(&self) -> &I::InternedGoal {
        &self.interned
    }

    /// Gets the interned goal data.
    pub fn data(&self, interner: I) -> &GoalData<I> {
        interner.goal_data(&self.interned)
    }

    /// Create a goal using a `forall` or `exists` quantifier.
    pub fn quantify(self, interner: I, kind: QuantifierKind, binders: VariableKinds<I>) -> Goal<I> {
        GoalData::Quantified(kind, Binders::new(binders, self)).intern(interner)
    }

    /// Takes a goal `G` and turns it into `not { G }`.
    pub fn negate(self, interner: I) -> Self {
        GoalData::Not(self).intern(interner)
    }

    /// Takes a goal `G` and turns it into `compatible { G }`.
    pub fn compatible(self, interner: I) -> Self {
        // compatible { G } desugars into: forall<T> { if (Compatible, DownstreamType(T)) { G } }
        // This activates the compatible modality rules and introduces an anonymous downstream type
        GoalData::Quantified(
            QuantifierKind::ForAll,
            Binders::with_fresh_type_var(interner, |ty| {
                GoalData::Implies(
                    ProgramClauses::from_iter(
                        interner,
                        vec![DomainGoal::Compatible, DomainGoal::DownstreamType(ty)],
                    ),
                    self.shifted_in(interner),
                )
                .intern(interner)
            }),
        )
        .intern(interner)
    }

    /// Create an implication goal that holds if the predicates are true.
    pub fn implied_by(self, interner: I, predicates: ProgramClauses<I>) -> Goal<I> {
        GoalData::Implies(predicates, self).intern(interner)
    }

    /// True if this goal is "trivially true" -- i.e., no work is
    /// required to prove it.
    pub fn is_trivially_true(&self, interner: I) -> bool {
        match self.data(interner) {
            GoalData::All(goals) => goals.is_empty(interner),
            _ => false,
        }
    }
}

impl<I> Goal<I>
where
    I: Interner,
{
    /// Creates a single goal that only holds if a list of goals holds.
    pub fn all<II>(interner: I, iter: II) -> Self
    where
        II: IntoIterator<Item = Goal<I>>,
    {
        let mut iter = iter.into_iter();
        if let Some(goal0) = iter.next() {
            if let Some(goal1) = iter.next() {
                // More than one goal to prove
                let goals = Goals::from_iter(
                    interner,
                    Some(goal0).into_iter().chain(Some(goal1)).chain(iter),
                );
                GoalData::All(goals).intern(interner)
            } else {
                // One goal to prove
                goal0
            }
        } else {
            // No goals to prove, always true
            GoalData::All(Goals::empty(interner)).intern(interner)
        }
    }
}

#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
/// A general goal; this is the full range of questions you can pose to Chalk.
pub enum GoalData<I: Interner> {
    /// Introduces a binding at depth 0, shifting other bindings up
    /// (deBruijn index).
    Quantified(QuantifierKind, Binders<Goal<I>>),

    /// A goal that holds given some clauses (like an if-statement).
    Implies(ProgramClauses<I>, Goal<I>),

    /// List of goals that all should hold.
    All(Goals<I>),

    /// Negation: the inner goal should not hold.
    Not(Goal<I>),

    /// Make two things equal; the rules for doing so are well known to the logic
    EqGoal(EqGoal<I>),

    /// Make one thing a subtype of another; the rules for doing so are well known to the logic
    SubtypeGoal(SubtypeGoal<I>),

    /// A "domain goal" indicates some base sort of goal that can be
    /// proven via program clauses
    DomainGoal(DomainGoal<I>),

    /// Indicates something that cannot be proven to be true or false
    /// definitively. This can occur with overflow but also with
    /// unifications of skolemized variables like `forall<X,Y> { X = Y
    /// }`. Of course, that statement is false, as there exist types
    /// X, Y where `X = Y` is not true. But we treat it as "cannot
    /// prove" so that `forall<X,Y> { not { X = Y } }` also winds up
    /// as cannot prove.
    CannotProve,
}

impl<I: Interner> Copy for GoalData<I>
where
    I::InternedType: Copy,
    I::InternedLifetime: Copy,
    I::InternedGenericArg: Copy,
    I::InternedSubstitution: Copy,
    I::InternedGoal: Copy,
    I::InternedGoals: Copy,
    I::InternedProgramClauses: Copy,
    I::InternedVariableKinds: Copy,
{
}

impl<I: Interner> GoalData<I> {
    /// Create an interned goal.
    pub fn intern(self, interner: I) -> Goal<I> {
        Goal::new(interner, self)
    }
}

/// Kinds of quantifiers in the logic, such as `forall` and `exists`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum QuantifierKind {
    /// Universal quantifier `ForAll`.
    ///
    /// A formula with the universal quantifier `forall(x). P(x)` is satisfiable
    /// if and only if the subformula `P(x)` is true for all possible values for x.
    ForAll,

    /// Existential quantifier `Exists`.
    ///
    /// A formula with the existential quantifier `exists(x). P(x)` is satisfiable
    /// if and only if there exists at least one value for all possible values of x
    /// which satisfies the subformula `P(x)`.

    /// In the context of chalk, the existential quantifier usually demands the
    /// existence of exactly one instance (i.e. type) that satisfies the formula
    /// (i.e. type constraints). More than one instance means that the result is ambiguous.
    Exists,
}

/// A constraint on lifetimes.
///
/// When we search for solutions within the trait system, we essentially ignore
/// lifetime constraints, instead gathering them up to return with our solution
/// for later checking. This allows for decoupling between type and region
/// checking in the compiler.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum Constraint<I: Interner> {
    /// Outlives constraint `'a: 'b`, indicating that the value of `'a` must be
    /// a superset of the value of `'b`.
    LifetimeOutlives(Lifetime<I>, Lifetime<I>),

    /// Type outlives constraint `T: 'a`, indicating that the type `T` must live
    /// at least as long as the value of `'a`.
    TypeOutlives(Ty<I>, Lifetime<I>),
}

impl<I: Interner> Copy for Constraint<I>
where
    I::InternedLifetime: Copy,
    I::InternedType: Copy,
{
}

impl<I: Interner> Substitution<I> {
    /// A substitution is an **identity substitution** if it looks
    /// like this
    ///
    /// ```text
    /// ?0 := ?0
    /// ?1 := ?1
    /// ?2 := ?2
    /// ...
    /// ```
    ///
    /// Basically, each value is mapped to a type or lifetime with its
    /// same index.
    pub fn is_identity_subst(&self, interner: I) -> bool {
        self.iter(interner).zip(0..).all(|(generic_arg, index)| {
            let index_db = BoundVar::new(DebruijnIndex::INNERMOST, index);
            match generic_arg.data(interner) {
                GenericArgData::Ty(ty) => match ty.kind(interner) {
                    TyKind::BoundVar(depth) => index_db == *depth,
                    _ => false,
                },
                GenericArgData::Lifetime(lifetime) => match lifetime.data(interner) {
                    LifetimeData::BoundVar(depth) => index_db == *depth,
                    _ => false,
                },
                GenericArgData::Const(constant) => match &constant.data(interner).value {
                    ConstValue::BoundVar(depth) => index_db == *depth,
                    _ => false,
                },
            }
        })
    }

    /// Apply the substitution to a value.
    pub fn apply<T>(&self, value: T, interner: I) -> T
    where
        T: TypeFoldable<I>,
    {
        Substitute::apply(self, value, interner)
    }

    /// Gets an iterator of all type parameters.
    pub fn type_parameters(&self, interner: I) -> impl Iterator<Item = Ty<I>> + '_ {
        self.iter(interner)
            .filter_map(move |p| p.ty(interner))
            .cloned()
    }

    /// Compute type flags for Substitution<I>
    fn compute_flags(&self, interner: I) -> TypeFlags {
        let mut flags = TypeFlags::empty();
        for generic_arg in self.iter(interner) {
            flags |= generic_arg.compute_flags(interner);
        }
        flags
    }
}

#[derive(FallibleTypeFolder)]
struct SubstFolder<'i, I: Interner, A: AsParameters<I>> {
    interner: I,
    subst: &'i A,
}

impl<I: Interner, A: AsParameters<I>> SubstFolder<'_, I, A> {
    /// Index into the list of parameters.
    pub fn at(&self, index: usize) -> &GenericArg<I> {
        let interner = self.interner;
        &self.subst.as_parameters(interner)[index]
    }
}

/// Convert a value to a list of parameters.
pub trait AsParameters<I: Interner> {
    /// Convert the current value to parameters.
    fn as_parameters(&self, interner: I) -> &[GenericArg<I>];
}

impl<I: Interner> AsParameters<I> for Substitution<I> {
    #[allow(unreachable_code, unused_variables)]
    fn as_parameters(&self, interner: I) -> &[GenericArg<I>] {
        self.as_slice(interner)
    }
}

impl<I: Interner> AsParameters<I> for [GenericArg<I>] {
    fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
        self
    }
}

impl<I: Interner> AsParameters<I> for [GenericArg<I>; 1] {
    fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
        self
    }
}

impl<I: Interner> AsParameters<I> for Vec<GenericArg<I>> {
    fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
        self
    }
}

impl<T, I: Interner> AsParameters<I> for &T
where
    T: ?Sized + AsParameters<I>,
{
    fn as_parameters(&self, interner: I) -> &[GenericArg<I>] {
        T::as_parameters(self, interner)
    }
}

/// An extension trait to anything that can be represented as list of `GenericArg`s that signifies
/// that it can applied as a substituion to a value
pub trait Substitute<I: Interner>: AsParameters<I> {
    /// Apply the substitution to a value.
    fn apply<T: TypeFoldable<I>>(&self, value: T, interner: I) -> T;
}

impl<I: Interner, A: AsParameters<I>> Substitute<I> for A {
    fn apply<T>(&self, value: T, interner: I) -> T
    where
        T: TypeFoldable<I>,
    {
        value
            .try_fold_with(
                &mut SubstFolder {
                    interner,
                    subst: self,
                },
                DebruijnIndex::INNERMOST,
            )
            .unwrap()
    }
}

/// Utility for converting a list of all the binders into scope
/// into references to those binders. Simply pair the binders with
/// the indices, and invoke `to_generic_arg()` on the `(binder,
/// index)` pair. The result will be a reference to a bound
/// variable of appropriate kind at the corresponding index.
pub trait ToGenericArg<I: Interner> {
    /// Converts the binders in scope to references to those binders.
    fn to_generic_arg(&self, interner: I) -> GenericArg<I> {
        self.to_generic_arg_at_depth(interner, DebruijnIndex::INNERMOST)
    }

    /// Converts the binders at the specified depth to references to those binders.
    fn to_generic_arg_at_depth(&self, interner: I, debruijn: DebruijnIndex) -> GenericArg<I>;
}

impl<'a, I: Interner> ToGenericArg<I> for (usize, &'a VariableKind<I>) {
    fn to_generic_arg_at_depth(&self, interner: I, debruijn: DebruijnIndex) -> GenericArg<I> {
        let &(index, binder) = self;
        let bound_var = BoundVar::new(debruijn, index);
        binder.to_bound_variable(interner, bound_var)
    }
}

impl<'i, I: Interner, A: AsParameters<I>> TypeFolder<I> for SubstFolder<'i, I, A> {
    fn as_dyn(&mut self) -> &mut dyn TypeFolder<I> {
        self
    }

    fn fold_free_var_ty(&mut self, bound_var: BoundVar, outer_binder: DebruijnIndex) -> Ty<I> {
        assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
        let ty = self.at(bound_var.index);
        let ty = ty.assert_ty_ref(TypeFolder::interner(self));
        ty.clone()
            .shifted_in_from(TypeFolder::interner(self), outer_binder)
    }

    fn fold_free_var_lifetime(
        &mut self,
        bound_var: BoundVar,
        outer_binder: DebruijnIndex,
    ) -> Lifetime<I> {
        assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
        let l = self.at(bound_var.index);
        let l = l.assert_lifetime_ref(TypeFolder::interner(self));
        l.clone()
            .shifted_in_from(TypeFolder::interner(self), outer_binder)
    }

    fn fold_free_var_const(
        &mut self,
        _ty: Ty<I>,
        bound_var: BoundVar,
        outer_binder: DebruijnIndex,
    ) -> Const<I> {
        assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
        let c = self.at(bound_var.index);
        let c = c.assert_const_ref(TypeFolder::interner(self));
        c.clone()
            .shifted_in_from(TypeFolder::interner(self), outer_binder)
    }

    fn interner(&self) -> I {
        self.interner
    }
}

macro_rules! interned_slice_common {
    ($seq:ident, $data:ident => $elem:ty, $intern:ident => $interned:ident) => {
        /// List of interned elements.
        #[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
        pub struct $seq<I: Interner> {
            interned: I::$interned,
        }

        impl<I: Interner> $seq<I> {
            /// Get the interned elements.
            pub fn interned(&self) -> &I::$interned {
                &self.interned
            }

            /// Returns a slice containing the elements.
            pub fn as_slice(&self, interner: I) -> &[$elem] {
                Interner::$data(interner, &self.interned)
            }

            /// Index into the sequence.
            pub fn at(&self, interner: I, index: usize) -> &$elem {
                &self.as_slice(interner)[index]
            }

            /// Create an empty sequence.
            pub fn empty(interner: I) -> Self {
                Self::from_iter(interner, None::<$elem>)
            }

            /// Check whether this is an empty sequence.
            pub fn is_empty(&self, interner: I) -> bool {
                self.as_slice(interner).is_empty()
            }

            /// Get an iterator over the elements of the sequence.
            pub fn iter(&self, interner: I) -> std::slice::Iter<'_, $elem> {
                self.as_slice(interner).iter()
            }

            /// Get the length of the sequence.
            pub fn len(&self, interner: I) -> usize {
                self.as_slice(interner).len()
            }
        }
    };
}

macro_rules! interned_slice {
    ($seq:ident, $data:ident => $elem:ty, $intern:ident => $interned:ident) => {
        interned_slice_common!($seq, $data => $elem, $intern => $interned);

        impl<I: Interner> $seq<I> {
            /// Tries to create a sequence using an iterator of element-like things.
            pub fn from_fallible<E>(
                interner: I,
                elements: impl IntoIterator<Item = Result<impl CastTo<$elem>, E>>,
            ) -> Result<Self, E> {
                Ok(Self {
                    interned: I::$intern(interner, elements.into_iter().casted(interner))?,
                })
            }

            /// Create a sequence from elements
            pub fn from_iter(
                interner: I,
                elements: impl IntoIterator<Item = impl CastTo<$elem>>,
            ) -> Self {
                Self::from_fallible(
                    interner,
                    elements
                        .into_iter()
                        .map(|el| -> Result<$elem, ()> { Ok(el.cast(interner)) }),
                )
                .unwrap()
            }

            /// Create a sequence from a single element.
            pub fn from1(interner: I, element: impl CastTo<$elem>) -> Self {
                Self::from_iter(interner, Some(element))
            }
        }
    };
}

interned_slice!(
    QuantifiedWhereClauses,
    quantified_where_clauses_data => QuantifiedWhereClause<I>,
    intern_quantified_where_clauses => InternedQuantifiedWhereClauses
);

interned_slice!(
    ProgramClauses,
    program_clauses_data => ProgramClause<I>,
    intern_program_clauses => InternedProgramClauses
);

interned_slice!(
    VariableKinds,
    variable_kinds_data => VariableKind<I>,
    intern_generic_arg_kinds => InternedVariableKinds
);

interned_slice!(
    CanonicalVarKinds,
    canonical_var_kinds_data => CanonicalVarKind<I>,
    intern_canonical_var_kinds => InternedCanonicalVarKinds
);

interned_slice!(Goals, goals_data => Goal<I>, intern_goals => InternedGoals);

interned_slice!(
    Constraints,
    constraints_data => InEnvironment<Constraint<I>>,
    intern_constraints => InternedConstraints
);

interned_slice!(
    Substitution,
    substitution_data => GenericArg<I>,
    intern_substitution => InternedSubstitution
);

interned_slice_common!(
    Variances,
    variances_data => Variance,
    intern_variance => InternedVariances
);

impl<I: Interner> Variances<I> {
    /// Tries to create a list of canonical variable kinds using an iterator.
    pub fn from_fallible<E>(
        interner: I,
        variances: impl IntoIterator<Item = Result<Variance, E>>,
    ) -> Result<Self, E> {
        Ok(Variances {
            interned: I::intern_variances(interner, variances.into_iter())?,
        })
    }

    /// Creates a list of canonical variable kinds using an iterator.
    pub fn from_iter(interner: I, variances: impl IntoIterator<Item = Variance>) -> Self {
        Self::from_fallible(
            interner,
            variances
                .into_iter()
                .map(|p| -> Result<Variance, ()> { Ok(p) }),
        )
        .unwrap()
    }

    /// Creates a list of canonical variable kinds from a single canonical variable kind.
    pub fn from1(interner: I, variance: Variance) -> Self {
        Self::from_iter(interner, Some(variance))
    }
}

/// Combines a substitution (`subst`) with a set of region constraints
/// (`constraints`). This represents the result of a query; the
/// substitution stores the values for the query's unknown variables,
/// and the constraints represents any region constraints that must
/// additionally be solved.
#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct ConstrainedSubst<I: Interner> {
    /// The substitution that is being constrained.
    ///
    /// NB: The `is_trivial` routine relies on the fact that `subst` is folded first.
    pub subst: Substitution<I>,

    /// Region constraints that constrain the substitution.
    pub constraints: Constraints<I>,
}

/// The resulting substitution after solving a goal.
#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct AnswerSubst<I: Interner> {
    /// The substitution result.
    ///
    /// NB: The `is_trivial` routine relies on the fact that `subst` is folded first.
    pub subst: Substitution<I>,

    /// List of constraints that are part of the answer.
    pub constraints: Constraints<I>,

    /// Delayed subgoals, used when the solver answered with an (incomplete) `Answer` (instead of a `CompleteAnswer`).
    pub delayed_subgoals: Vec<InEnvironment<Goal<I>>>,
}

/// Logic to decide the Variance for a given subst
pub trait UnificationDatabase<I>
where
    Self: std::fmt::Debug,
    I: Interner,
{
    /// Gets the variances for the substitution of a fn def
    fn fn_def_variance(&self, fn_def_id: FnDefId<I>) -> Variances<I>;

    /// Gets the variances for the substitution of a adt
    fn adt_variance(&self, adt_id: AdtId<I>) -> Variances<I>;
}