1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
//! Defines the IR for types and logical predicates.
#![deny(rust_2018_idioms)]
#![warn(missing_docs)]
// Allows macros to refer to this crate as `::chalk_ir`
extern crate self as chalk_ir;
use crate::cast::{Cast, CastTo, Caster};
use crate::fold::shift::Shift;
use crate::fold::{FallibleTypeFolder, Subst, TypeFoldable, TypeFolder, TypeSuperFoldable};
use crate::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor, VisitExt};
use chalk_derive::{
FallibleTypeFolder, HasInterner, TypeFoldable, TypeSuperVisitable, TypeVisitable, Zip,
};
use std::marker::PhantomData;
use std::ops::ControlFlow;
pub use crate::debug::SeparatorTraitRef;
#[macro_use(bitflags)]
extern crate bitflags;
/// Uninhabited (empty) type, used in combination with `PhantomData`.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Void {}
/// Many of our internal operations (e.g., unification) are an attempt
/// to perform some operation which may not complete.
pub type Fallible<T> = Result<T, NoSolution>;
/// A combination of `Fallible` and `Floundered`.
pub enum FallibleOrFloundered<T> {
/// Success
Ok(T),
/// No solution. See `chalk_ir::NoSolution`.
NoSolution,
/// Floundered. See `chalk_ir::Floundered`.
Floundered,
}
/// Indicates that the attempted operation has "no solution" -- i.e.,
/// cannot be performed.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct NoSolution;
/// Indicates that the complete set of program clauses for this goal
/// cannot be enumerated.
pub struct Floundered;
macro_rules! impl_debugs {
($($id:ident), *) => {
$(
impl<I: Interner> std::fmt::Debug for $id<I> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
write!(fmt, "{}({:?})", stringify!($id), self.0)
}
}
)*
};
}
#[macro_use]
pub mod zip;
#[macro_use]
pub mod fold;
#[macro_use]
pub mod visit;
pub mod cast;
pub mod interner;
use interner::{HasInterner, Interner};
pub mod could_match;
pub mod debug;
/// Variance
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum Variance {
/// a <: b
Covariant,
/// a == b
Invariant,
/// b <: a
Contravariant,
}
impl Variance {
/// `a.xform(b)` combines the variance of a context with the
/// variance of a type with the following meaning. If we are in a
/// context with variance `a`, and we encounter a type argument in
/// a position with variance `b`, then `a.xform(b)` is the new
/// variance with which the argument appears.
///
/// Example 1:
///
/// ```ignore
/// *mut Vec<i32>
/// ```
///
/// Here, the "ambient" variance starts as covariant. `*mut T` is
/// invariant with respect to `T`, so the variance in which the
/// `Vec<i32>` appears is `Covariant.xform(Invariant)`, which
/// yields `Invariant`. Now, the type `Vec<T>` is covariant with
/// respect to its type argument `T`, and hence the variance of
/// the `i32` here is `Invariant.xform(Covariant)`, which results
/// (again) in `Invariant`.
///
/// Example 2:
///
/// ```ignore
/// fn(*const Vec<i32>, *mut Vec<i32)
/// ```
///
/// The ambient variance is covariant. A `fn` type is
/// contravariant with respect to its parameters, so the variance
/// within which both pointer types appear is
/// `Covariant.xform(Contravariant)`, or `Contravariant`. `*const
/// T` is covariant with respect to `T`, so the variance within
/// which the first `Vec<i32>` appears is
/// `Contravariant.xform(Covariant)` or `Contravariant`. The same
/// is true for its `i32` argument. In the `*mut T` case, the
/// variance of `Vec<i32>` is `Contravariant.xform(Invariant)`,
/// and hence the outermost type is `Invariant` with respect to
/// `Vec<i32>` (and its `i32` argument).
///
/// Source: Figure 1 of "Taming the Wildcards:
/// Combining Definition- and Use-Site Variance" published in PLDI'11.
/// (Doc from rustc)
pub fn xform(self, other: Variance) -> Variance {
match (self, other) {
(Variance::Invariant, _) => Variance::Invariant,
(_, Variance::Invariant) => Variance::Invariant,
(_, Variance::Covariant) => self,
(Variance::Covariant, Variance::Contravariant) => Variance::Contravariant,
(Variance::Contravariant, Variance::Contravariant) => Variance::Covariant,
}
}
/// Converts `Covariant` into `Contravariant` and vice-versa. `Invariant`
/// stays the same.
pub fn invert(self) -> Variance {
match self {
Variance::Invariant => Variance::Invariant,
Variance::Covariant => Variance::Contravariant,
Variance::Contravariant => Variance::Covariant,
}
}
}
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
/// The set of assumptions we've made so far, and the current number of
/// universal (forall) quantifiers we're within.
pub struct Environment<I: Interner> {
/// The clauses in the environment.
pub clauses: ProgramClauses<I>,
}
impl<I: Interner> Copy for Environment<I> where I::InternedProgramClauses: Copy {}
impl<I: Interner> Environment<I> {
/// Creates a new environment.
pub fn new(interner: I) -> Self {
Environment {
clauses: ProgramClauses::empty(interner),
}
}
/// Adds (an iterator of) clauses to the environment.
pub fn add_clauses<II>(&self, interner: I, clauses: II) -> Self
where
II: IntoIterator<Item = ProgramClause<I>>,
{
let mut env = self.clone();
env.clauses =
ProgramClauses::from_iter(interner, env.clauses.iter(interner).cloned().chain(clauses));
env
}
/// True if any of the clauses in the environment have a consequence of `Compatible`.
/// Panics if the conditions or constraints of that clause are not empty.
pub fn has_compatible_clause(&self, interner: I) -> bool {
self.clauses.as_slice(interner).iter().any(|c| {
let ProgramClauseData(implication) = c.data(interner);
match implication.skip_binders().consequence {
DomainGoal::Compatible => {
// We currently don't generate `Compatible` with any conditions or constraints
// If this was needed, for whatever reason, then a third "yes, but must evaluate"
// return value would have to be added.
assert!(implication.skip_binders().conditions.is_empty(interner));
assert!(implication.skip_binders().constraints.is_empty(interner));
true
}
_ => false,
}
})
}
}
/// A goal with an environment to solve it in.
#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
#[allow(missing_docs)]
pub struct InEnvironment<G: HasInterner> {
pub environment: Environment<G::Interner>,
pub goal: G,
}
impl<G: HasInterner<Interner = I> + Copy, I: Interner> Copy for InEnvironment<G> where
I::InternedProgramClauses: Copy
{
}
impl<G: HasInterner> InEnvironment<G> {
/// Creates a new environment/goal pair.
pub fn new(environment: &Environment<G::Interner>, goal: G) -> Self {
InEnvironment {
environment: environment.clone(),
goal,
}
}
/// Maps the goal without touching the environment.
pub fn map<OP, H>(self, op: OP) -> InEnvironment<H>
where
OP: FnOnce(G) -> H,
H: HasInterner<Interner = G::Interner>,
{
InEnvironment {
environment: self.environment,
goal: op(self.goal),
}
}
}
impl<G: HasInterner> HasInterner for InEnvironment<G> {
type Interner = G::Interner;
}
/// Different signed int types.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum IntTy {
Isize,
I8,
I16,
I32,
I64,
I128,
}
/// Different unsigned int types.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum UintTy {
Usize,
U8,
U16,
U32,
U64,
U128,
}
/// Different kinds of float types.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum FloatTy {
F16,
F32,
F64,
F128,
}
/// Types of scalar values.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(missing_docs)]
pub enum Scalar {
Bool,
Char,
Int(IntTy),
Uint(UintTy),
Float(FloatTy),
}
/// Whether a function is safe or not.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Safety {
/// Safe
Safe,
/// Unsafe
Unsafe,
}
/// Whether a type is mutable or not.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Mutability {
/// Mutable
Mut,
/// Immutable
Not,
}
/// An universe index is how a universally quantified parameter is
/// represented when it's binder is moved into the environment.
/// An example chain of transformations would be:
/// `forall<T> { Goal(T) }` (syntactical representation)
/// `forall { Goal(?0) }` (used a DeBruijn index)
/// `Goal(!U1)` (the quantifier was moved to the environment and replaced with a universe index)
/// See <https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference.html#placeholders-and-universes> for more.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct UniverseIndex {
/// The counter for the universe index, starts with 0.
pub counter: usize,
}
impl UniverseIndex {
/// Root universe index (0).
pub const ROOT: UniverseIndex = UniverseIndex { counter: 0 };
/// Root universe index (0).
pub fn root() -> UniverseIndex {
Self::ROOT
}
/// Whether one universe can "see" another.
pub fn can_see(self, ui: UniverseIndex) -> bool {
self.counter >= ui.counter
}
/// Increases the index counter.
pub fn next(self) -> UniverseIndex {
UniverseIndex {
counter: self.counter + 1,
}
}
}
/// Maps the universes found in the `u_canonicalize` result (the
/// "canonical" universes) to the universes found in the original
/// value (and vice versa). When used as a folder -- i.e., from
/// outside this module -- converts from "canonical" universes to the
/// original (but see the `UMapToCanonical` folder).
#[derive(Clone, Debug)]
pub struct UniverseMap {
/// A reverse map -- for each universe Ux that appears in
/// `quantified`, the corresponding universe in the original was
/// `universes[x]`.
pub universes: Vec<UniverseIndex>,
}
impl UniverseMap {
/// Creates a new universe map.
pub fn new() -> Self {
UniverseMap {
universes: vec![UniverseIndex::root()],
}
}
/// Number of canonical universes.
pub fn num_canonical_universes(&self) -> usize {
self.universes.len()
}
}
/// The id for an Abstract Data Type (i.e. structs, unions and enums).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct AdtId<I: Interner>(pub I::InternedAdtId);
/// The id of a trait definition; could be used to load the trait datum by
/// invoking the [`trait_datum`] method.
///
/// [`trait_datum`]: ../chalk_solve/trait.RustIrDatabase.html#tymethod.trait_datum
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct TraitId<I: Interner>(pub I::DefId);
/// The id for an impl.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ImplId<I: Interner>(pub I::DefId);
/// Id for a specific clause.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ClauseId<I: Interner>(pub I::DefId);
/// The id for the associated type member of a trait. The details of the type
/// can be found by invoking the [`associated_ty_data`] method.
///
/// [`associated_ty_data`]: ../chalk_solve/trait.RustIrDatabase.html#tymethod.associated_ty_data
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct AssocTypeId<I: Interner>(pub I::DefId);
/// Id for an opaque type.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct OpaqueTyId<I: Interner>(pub I::DefId);
/// Function definition id.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct FnDefId<I: Interner>(pub I::DefId);
/// Id for Rust closures.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ClosureId<I: Interner>(pub I::DefId);
/// Id for Rust coroutines.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CoroutineId<I: Interner>(pub I::DefId);
/// Id for foreign types.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ForeignDefId<I: Interner>(pub I::DefId);
impl_debugs!(ImplId, ClauseId);
/// A Rust type. The actual type data is stored in `TyKind`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct Ty<I: Interner> {
interned: I::InternedType,
}
impl<I: Interner> Ty<I> {
/// Creates a type from `TyKind`.
pub fn new(interner: I, data: impl CastTo<TyKind<I>>) -> Self {
let ty_kind = data.cast(interner);
Ty {
interned: I::intern_ty(interner, ty_kind),
}
}
/// Gets the interned type.
pub fn interned(&self) -> &I::InternedType {
&self.interned
}
/// Gets the underlying type data.
pub fn data(&self, interner: I) -> &TyData<I> {
I::ty_data(interner, &self.interned)
}
/// Gets the underlying type kind.
pub fn kind(&self, interner: I) -> &TyKind<I> {
&I::ty_data(interner, &self.interned).kind
}
/// Creates a `FromEnv` constraint using this type.
pub fn from_env(&self) -> FromEnv<I> {
FromEnv::Ty(self.clone())
}
/// Creates a WF-constraint for this type.
pub fn well_formed(&self) -> WellFormed<I> {
WellFormed::Ty(self.clone())
}
/// Creates a domain goal `FromEnv(T)` where `T` is this type.
pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
self.from_env().cast(interner)
}
/// If this is a `TyKind::BoundVar(d)`, returns `Some(d)` else `None`.
pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
if let TyKind::BoundVar(bv) = self.kind(interner) {
Some(*bv)
} else {
None
}
}
/// If this is a `TyKind::InferenceVar(d)`, returns `Some(d)` else `None`.
pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
if let TyKind::InferenceVar(depth, _) = self.kind(interner) {
Some(*depth)
} else {
None
}
}
/// Returns true if this is a `BoundVar` or an `InferenceVar` of `TyVariableKind::General`.
pub fn is_general_var(&self, interner: I, binders: &CanonicalVarKinds<I>) -> bool {
match self.kind(interner) {
TyKind::BoundVar(bv)
if bv.debruijn == DebruijnIndex::INNERMOST
&& binders.at(interner, bv.index).kind
== VariableKind::Ty(TyVariableKind::General) =>
{
true
}
TyKind::InferenceVar(_, TyVariableKind::General) => true,
_ => false,
}
}
/// Returns true if this is an `Alias`.
pub fn is_alias(&self, interner: I) -> bool {
matches!(self.kind(interner), TyKind::Alias(..))
}
/// Returns true if this is an `IntTy` or `UintTy`.
pub fn is_integer(&self, interner: I) -> bool {
matches!(
self.kind(interner),
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_))
)
}
/// Returns true if this is a `FloatTy`.
pub fn is_float(&self, interner: I) -> bool {
matches!(self.kind(interner), TyKind::Scalar(Scalar::Float(_)))
}
/// Returns `Some(adt_id)` if this is an ADT, `None` otherwise
pub fn adt_id(&self, interner: I) -> Option<AdtId<I>> {
match self.kind(interner) {
TyKind::Adt(adt_id, _) => Some(*adt_id),
_ => None,
}
}
/// True if this type contains "bound" types/lifetimes, and hence
/// needs to be shifted across binders. This is a very inefficient
/// check, intended only for debug assertions, because I am lazy.
pub fn needs_shift(&self, interner: I) -> bool {
self.has_free_vars(interner)
}
}
/// Contains the data for a Ty
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub struct TyData<I: Interner> {
/// The kind
pub kind: TyKind<I>,
/// Type flags
pub flags: TypeFlags,
}
bitflags! {
/// Contains flags indicating various properties of a Ty
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct TypeFlags : u16 {
/// Does the type contain an InferenceVar
const HAS_TY_INFER = 1;
/// Does the type contain a lifetime with an InferenceVar
const HAS_RE_INFER = 1 << 1;
/// Does the type contain a ConstValue with an InferenceVar
const HAS_CT_INFER = 1 << 2;
/// Does the type contain a Placeholder TyKind
const HAS_TY_PLACEHOLDER = 1 << 3;
/// Does the type contain a lifetime with a Placeholder
const HAS_RE_PLACEHOLDER = 1 << 4;
/// Does the type contain a ConstValue Placeholder
const HAS_CT_PLACEHOLDER = 1 << 5;
/// True when the type has free lifetimes related to a local context
const HAS_FREE_LOCAL_REGIONS = 1 << 6;
/// Does the type contain a projection of an associated type
const HAS_TY_PROJECTION = 1 << 7;
/// Does the type contain an opaque type
const HAS_TY_OPAQUE = 1 << 8;
/// Does the type contain an unevaluated const projection
const HAS_CT_PROJECTION = 1 << 9;
/// Does the type contain an error
const HAS_ERROR = 1 << 10;
/// Does the type contain an error lifetime
const HAS_RE_ERROR = 1 << 11;
/// Does the type contain any free lifetimes
const HAS_FREE_REGIONS = 1 << 12;
/// True when the type contains lifetimes that will be substituted when function is called
const HAS_RE_LATE_BOUND = 1 << 13;
/// True when the type contains an erased lifetime
const HAS_RE_ERASED = 1 << 14;
/// Does the type contain placeholders or inference variables that could be replaced later
const STILL_FURTHER_SPECIALIZABLE = 1 << 15;
/// True when the type contains free names local to a particular context
const HAS_FREE_LOCAL_NAMES = TypeFlags::HAS_TY_INFER.bits()
| TypeFlags::HAS_CT_INFER.bits()
| TypeFlags::HAS_TY_PLACEHOLDER.bits()
| TypeFlags::HAS_CT_PLACEHOLDER.bits()
| TypeFlags::HAS_FREE_LOCAL_REGIONS.bits();
/// Does the type contain any form of projection
const HAS_PROJECTION = TypeFlags::HAS_TY_PROJECTION.bits()
| TypeFlags::HAS_TY_OPAQUE.bits()
| TypeFlags::HAS_CT_PROJECTION.bits();
}
}
/// Type data, which holds the actual type information.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub enum TyKind<I: Interner> {
/// Abstract data types, i.e., structs, unions, or enumerations.
/// For example, a type like `Vec<T>`.
Adt(AdtId<I>, Substitution<I>),
/// an associated type like `Iterator::Item`; see `AssociatedType` for details
AssociatedType(AssocTypeId<I>, Substitution<I>),
/// a scalar type like `bool` or `u32`
Scalar(Scalar),
/// a tuple of the given arity
Tuple(usize, Substitution<I>),
/// an array type like `[T; N]`
Array(Ty<I>, Const<I>),
/// a slice type like `[T]`
Slice(Ty<I>),
/// a raw pointer type like `*const T` or `*mut T`
Raw(Mutability, Ty<I>),
/// a reference type like `&T` or `&mut T`
Ref(Mutability, Lifetime<I>, Ty<I>),
/// a placeholder for opaque types like `impl Trait`
OpaqueType(OpaqueTyId<I>, Substitution<I>),
/// a function definition
FnDef(FnDefId<I>, Substitution<I>),
/// the string primitive type
Str,
/// the never type `!`
Never,
/// A closure.
Closure(ClosureId<I>, Substitution<I>),
/// A coroutine.
Coroutine(CoroutineId<I>, Substitution<I>),
/// A coroutine witness.
CoroutineWitness(CoroutineId<I>, Substitution<I>),
/// foreign types
Foreign(ForeignDefId<I>),
/// This can be used to represent an error, e.g. during name resolution of a type.
/// Chalk itself will not produce this, just pass it through when given.
Error,
/// instantiated from a universally quantified type, e.g., from
/// `forall<T> { .. }`. Stands in as a representative of "some
/// unknown type".
Placeholder(PlaceholderIndex),
/// A "dyn" type is a trait object type created via the "dyn Trait" syntax.
/// In the chalk parser, the traits that the object represents is parsed as
/// a QuantifiedInlineBound, and is then changed to a list of where clauses
/// during lowering.
///
/// See the `Opaque` variant for a discussion about the use of
/// binders here.
Dyn(DynTy<I>),
/// An "alias" type represents some form of type alias, such as:
/// - An associated type projection like `<T as Iterator>::Item`
/// - `impl Trait` types
/// - Named type aliases like `type Foo<X> = Vec<X>`
Alias(AliasTy<I>),
/// A function type such as `for<'a> fn(&'a u32)`.
/// Note that "higher-ranked" types (starting with `for<>`) are either
/// function types or dyn types, and do not appear otherwise in Rust
/// surface syntax.
Function(FnPointer<I>),
/// References the binding at the given depth. The index is a [de
/// Bruijn index], so it counts back through the in-scope binders.
BoundVar(BoundVar),
/// Inference variable defined in the current inference context.
InferenceVar(InferenceVar, TyVariableKind),
}
impl<I: Interner> Copy for TyKind<I>
where
I::InternedLifetime: Copy,
I::InternedSubstitution: Copy,
I::InternedVariableKinds: Copy,
I::InternedQuantifiedWhereClauses: Copy,
I::InternedType: Copy,
I::InternedConst: Copy,
{
}
impl<I: Interner> TyKind<I> {
/// Casts the type data to a type.
pub fn intern(self, interner: I) -> Ty<I> {
Ty::new(interner, self)
}
/// Compute type flags for a TyKind
pub fn compute_flags(&self, interner: I) -> TypeFlags {
match self {
TyKind::Adt(_, substitution)
| TyKind::AssociatedType(_, substitution)
| TyKind::Tuple(_, substitution)
| TyKind::Closure(_, substitution)
| TyKind::Coroutine(_, substitution)
| TyKind::CoroutineWitness(_, substitution)
| TyKind::FnDef(_, substitution)
| TyKind::OpaqueType(_, substitution) => substitution.compute_flags(interner),
TyKind::Scalar(_) | TyKind::Str | TyKind::Never | TyKind::Foreign(_) => {
TypeFlags::empty()
}
TyKind::Error => TypeFlags::HAS_ERROR,
TyKind::Slice(ty) | TyKind::Raw(_, ty) => ty.data(interner).flags,
TyKind::Ref(_, lifetime, ty) => {
lifetime.compute_flags(interner) | ty.data(interner).flags
}
TyKind::Array(ty, const_ty) => {
let flags = ty.data(interner).flags;
let const_data = const_ty.data(interner);
flags
| const_data.ty.data(interner).flags
| match const_data.value {
ConstValue::BoundVar(_) | ConstValue::Concrete(_) => TypeFlags::empty(),
ConstValue::InferenceVar(_) => {
TypeFlags::HAS_CT_INFER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
}
ConstValue::Placeholder(_) => {
TypeFlags::HAS_CT_PLACEHOLDER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
}
}
}
TyKind::Placeholder(_) => TypeFlags::HAS_TY_PLACEHOLDER,
TyKind::Dyn(dyn_ty) => {
let lifetime_flags = dyn_ty.lifetime.compute_flags(interner);
let mut dyn_flags = TypeFlags::empty();
for var_kind in dyn_ty.bounds.skip_binders().iter(interner) {
match &(var_kind.skip_binders()) {
WhereClause::Implemented(trait_ref) => {
dyn_flags |= trait_ref.substitution.compute_flags(interner)
}
WhereClause::AliasEq(alias_eq) => {
dyn_flags |= alias_eq.alias.compute_flags(interner);
dyn_flags |= alias_eq.ty.data(interner).flags;
}
WhereClause::LifetimeOutlives(lifetime_outlives) => {
dyn_flags |= lifetime_outlives.a.compute_flags(interner)
| lifetime_outlives.b.compute_flags(interner);
}
WhereClause::TypeOutlives(type_outlives) => {
dyn_flags |= type_outlives.ty.data(interner).flags;
dyn_flags |= type_outlives.lifetime.compute_flags(interner);
}
}
}
lifetime_flags | dyn_flags
}
TyKind::Alias(alias_ty) => alias_ty.compute_flags(interner),
TyKind::BoundVar(_) => TypeFlags::empty(),
TyKind::InferenceVar(_, _) => TypeFlags::HAS_TY_INFER,
TyKind::Function(fn_pointer) => fn_pointer.substitution.0.compute_flags(interner),
}
}
}
/// Identifies a particular bound variable within a binder.
/// Variables are identified by the combination of a [`DebruijnIndex`],
/// which identifies the *binder*, and an index within that binder.
///
/// Consider this case:
///
/// ```ignore
/// forall<'a, 'b> { forall<'c, 'd> { ... } }
/// ```
///
/// Within the `...` term:
///
/// * the variable `'a` have a debruijn index of 1 and index 0
/// * the variable `'b` have a debruijn index of 1 and index 1
/// * the variable `'c` have a debruijn index of 0 and index 0
/// * the variable `'d` have a debruijn index of 0 and index 1
///
/// The variables `'a` and `'b` both have debruijn index of 1 because,
/// counting out, they are the 2nd binder enclosing `...`. The indices
/// identify the location *within* that binder.
///
/// The variables `'c` and `'d` both have debruijn index of 0 because
/// they appear in the *innermost* binder enclosing the `...`. The
/// indices identify the location *within* that binder.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct BoundVar {
/// Debruijn index, which identifies the binder.
pub debruijn: DebruijnIndex,
/// Index within the binder.
pub index: usize,
}
impl BoundVar {
/// Creates a new bound variable.
pub fn new(debruijn: DebruijnIndex, index: usize) -> Self {
Self { debruijn, index }
}
/// Casts the bound variable to a type.
pub fn to_ty<I: Interner>(self, interner: I) -> Ty<I> {
TyKind::<I>::BoundVar(self).intern(interner)
}
/// Wrap the bound variable in a lifetime.
pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
LifetimeData::<I>::BoundVar(self).intern(interner)
}
/// Wraps the bound variable in a constant.
pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
ConstData {
ty,
value: ConstValue::<I>::BoundVar(self),
}
.intern(interner)
}
/// True if this variable is bound within the `amount` innermost binders.
pub fn bound_within(self, outer_binder: DebruijnIndex) -> bool {
self.debruijn.within(outer_binder)
}
/// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
#[must_use]
pub fn shifted_in(self) -> Self {
BoundVar::new(self.debruijn.shifted_in(), self.index)
}
/// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
#[must_use]
pub fn shifted_in_from(self, outer_binder: DebruijnIndex) -> Self {
BoundVar::new(self.debruijn.shifted_in_from(outer_binder), self.index)
}
/// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
#[must_use]
pub fn shifted_out(self) -> Option<Self> {
self.debruijn
.shifted_out()
.map(|db| BoundVar::new(db, self.index))
}
/// Adjusts the debruijn index (see [`DebruijnIndex::shifted_in`]).
#[must_use]
pub fn shifted_out_to(self, outer_binder: DebruijnIndex) -> Option<Self> {
self.debruijn
.shifted_out_to(outer_binder)
.map(|db| BoundVar::new(db, self.index))
}
/// Return the index of the bound variable, but only if it is bound
/// at the innermost binder. Otherwise, returns `None`.
pub fn index_if_innermost(self) -> Option<usize> {
self.index_if_bound_at(DebruijnIndex::INNERMOST)
}
/// Return the index of the bound variable, but only if it is bound
/// at the innermost binder. Otherwise, returns `None`.
pub fn index_if_bound_at(self, debruijn: DebruijnIndex) -> Option<usize> {
if self.debruijn == debruijn {
Some(self.index)
} else {
None
}
}
}
/// References the binder at the given depth. The index is a [de
/// Bruijn index], so it counts back through the in-scope binders,
/// with 0 being the innermost binder. This is used in impls and
/// the like. For example, if we had a rule like `for<T> { (T:
/// Clone) :- (T: Copy) }`, then `T` would be represented as a
/// `BoundVar(0)` (as the `for` is the innermost binder).
///
/// [de Bruijn index]: https://en.wikipedia.org/wiki/De_Bruijn_index
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct DebruijnIndex {
depth: u32,
}
impl DebruijnIndex {
/// Innermost index.
pub const INNERMOST: DebruijnIndex = DebruijnIndex { depth: 0 };
/// One level higher than the innermost index.
pub const ONE: DebruijnIndex = DebruijnIndex { depth: 1 };
/// Creates a new de Bruijn index with a given depth.
pub fn new(depth: u32) -> Self {
DebruijnIndex { depth }
}
/// Depth of the De Bruijn index, counting from 0 starting with
/// the innermost binder.
pub fn depth(self) -> u32 {
self.depth
}
/// True if the binder identified by this index is within the
/// binder identified by the index `outer_binder`.
///
/// # Example
///
/// Imagine you have the following binders in scope
///
/// ```ignore
/// forall<a> forall<b> forall<c>
/// ```
///
/// then the Debruijn index for `c` would be `0`, the index for
/// `b` would be 1, and so on. Now consider the following calls:
///
/// * `c.within(a) = true`
/// * `b.within(a) = true`
/// * `a.within(a) = false`
/// * `a.within(c) = false`
pub fn within(self, outer_binder: DebruijnIndex) -> bool {
self < outer_binder
}
/// Returns the resulting index when this value is moved into
/// through one binder.
#[must_use]
pub fn shifted_in(self) -> DebruijnIndex {
self.shifted_in_from(DebruijnIndex::ONE)
}
/// Update this index in place by shifting it "in" through
/// `amount` number of binders.
pub fn shift_in(&mut self) {
*self = self.shifted_in();
}
/// Adds `outer_binder` levels to the `self` index. Intuitively, this
/// shifts the `self` index, which was valid at the outer binder,
/// so that it is valid at the innermost binder.
///
/// Example: Assume that the following binders are in scope:
///
/// ```ignore
/// for<A> for<B> for<C> for<D>
/// ^ outer binder
/// ```
///
/// Assume further that the `outer_binder` argument is 2,
/// which means that it is referring to the `for<B>` binder
/// (since `D` would be the innermost binder).
///
/// This means that `self` is relative to the binder `B` -- so
/// if `self` is 0 (`INNERMOST`), then it refers to `B`,
/// and if `self` is 1, then it refers to `A`.
///
/// We will return as follows:
///
/// * `0.shifted_in_from(2) = 2` -- i.e., `B`, when shifted in to the binding level `D`, has index 2
/// * `1.shifted_in_from(2) = 3` -- i.e., `A`, when shifted in to the binding level `D`, has index 3
/// * `2.shifted_in_from(1) = 3` -- here, we changed the `outer_binder` to refer to `C`.
/// Therefore `2` (relative to `C`) refers to `A`, so the result is still 3 (since `A`, relative to the
/// innermost binder, has index 3).
#[must_use]
pub fn shifted_in_from(self, outer_binder: DebruijnIndex) -> DebruijnIndex {
DebruijnIndex::new(self.depth() + outer_binder.depth())
}
/// Returns the resulting index when this value is moved out from
/// `amount` number of new binders.
#[must_use]
pub fn shifted_out(self) -> Option<DebruijnIndex> {
self.shifted_out_to(DebruijnIndex::ONE)
}
/// Update in place by shifting out from `amount` binders.
pub fn shift_out(&mut self) {
*self = self.shifted_out().unwrap();
}
/// Subtracts `outer_binder` levels from the `self` index. Intuitively, this
/// shifts the `self` index, which was valid at the innermost
/// binder, to one that is valid at the binder `outer_binder`.
///
/// This will return `None` if the `self` index is internal to the
/// outer binder (i.e., if `self < outer_binder`).
///
/// Example: Assume that the following binders are in scope:
///
/// ```ignore
/// for<A> for<B> for<C> for<D>
/// ^ outer binder
/// ```
///
/// Assume further that the `outer_binder` argument is 2,
/// which means that it is referring to the `for<B>` binder
/// (since `D` would be the innermost binder).
///
/// This means that the result is relative to the binder `B` -- so
/// if `self` is 0 (`INNERMOST`), then it refers to `B`,
/// and if `self` is 1, then it refers to `A`.
///
/// We will return as follows:
///
/// * `1.shifted_out_to(2) = None` -- i.e., the binder for `C` can't be named from the binding level `B`
/// * `3.shifted_out_to(2) = Some(1)` -- i.e., `A`, when shifted out to the binding level `B`, has index 1
pub fn shifted_out_to(self, outer_binder: DebruijnIndex) -> Option<DebruijnIndex> {
if self.within(outer_binder) {
None
} else {
Some(DebruijnIndex::new(self.depth() - outer_binder.depth()))
}
}
}
/// A "DynTy" represents a trait object (`dyn Trait`). Trait objects
/// are conceptually very related to an "existential type" of the form
/// `exists<T> { T: Trait }` (another example of such type is `impl Trait`).
/// `DynTy` represents the bounds on that type.
///
/// The "bounds" here represents the unknown self type. So, a type like
/// `dyn for<'a> Fn(&'a u32)` would be represented with two-levels of
/// binder, as "depicted" here:
///
/// ```notrust
/// exists<type> {
/// vec![
/// // A QuantifiedWhereClause:
/// forall<region> { ^1.0: Fn(&^0.0 u32) }
/// ]
/// }
/// ```
///
/// The outer `exists<type>` binder indicates that there exists
/// some type that meets the criteria within, but that type is not
/// known. It is referenced within the type using `^1.0`, indicating
/// a bound type with debruijn index 1 (i.e., skipping through one
/// level of binder).
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct DynTy<I: Interner> {
/// The unknown self type.
pub bounds: Binders<QuantifiedWhereClauses<I>>,
/// Lifetime of the `DynTy`.
pub lifetime: Lifetime<I>,
}
impl<I: Interner> Copy for DynTy<I>
where
I::InternedLifetime: Copy,
I::InternedQuantifiedWhereClauses: Copy,
I::InternedVariableKinds: Copy,
{
}
/// A type, lifetime or constant whose value is being inferred.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct InferenceVar {
index: u32,
}
impl From<u32> for InferenceVar {
fn from(index: u32) -> InferenceVar {
InferenceVar { index }
}
}
impl InferenceVar {
/// Gets the underlying index value.
pub fn index(self) -> u32 {
self.index
}
/// Wraps the inference variable in a type.
pub fn to_ty<I: Interner>(self, interner: I, kind: TyVariableKind) -> Ty<I> {
TyKind::<I>::InferenceVar(self, kind).intern(interner)
}
/// Wraps the inference variable in a lifetime.
pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
LifetimeData::<I>::InferenceVar(self).intern(interner)
}
/// Wraps the inference variable in a constant.
pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
ConstData {
ty,
value: ConstValue::<I>::InferenceVar(self),
}
.intern(interner)
}
}
/// A function signature.
#[derive(Clone, Copy, PartialEq, Eq, Hash, HasInterner, Debug)]
#[allow(missing_docs)]
pub struct FnSig<I: Interner> {
pub abi: I::FnAbi,
pub safety: Safety,
pub variadic: bool,
}
/// A wrapper for the substs on a Fn.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner, TypeFoldable, TypeVisitable)]
pub struct FnSubst<I: Interner>(pub Substitution<I>);
impl<I: Interner> Copy for FnSubst<I> where I::InternedSubstitution: Copy {}
/// for<'a...'z> X -- all binders are instantiated at once,
/// and we use deBruijn indices within `self.ty`
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
#[allow(missing_docs)]
pub struct FnPointer<I: Interner> {
pub num_binders: usize,
pub sig: FnSig<I>,
pub substitution: FnSubst<I>,
}
impl<I: Interner> Copy for FnPointer<I> where I::InternedSubstitution: Copy {}
impl<I: Interner> FnPointer<I> {
/// Represent the current `Fn` as if it was wrapped in `Binders`
pub fn into_binders(self, interner: I) -> Binders<FnSubst<I>> {
Binders::new(
VariableKinds::from_iter(
interner,
(0..self.num_binders).map(|_| VariableKind::Lifetime),
),
self.substitution,
)
}
/// Represent the current `Fn` as if it was wrapped in `Binders`
pub fn as_binders(&self, interner: I) -> Binders<&FnSubst<I>> {
Binders::new(
VariableKinds::from_iter(
interner,
(0..self.num_binders).map(|_| VariableKind::Lifetime),
),
&self.substitution,
)
}
}
/// Constants.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct Const<I: Interner> {
interned: I::InternedConst,
}
impl<I: Interner> Const<I> {
/// Create a `Const` using something that can be cast to const data.
pub fn new(interner: I, data: impl CastTo<ConstData<I>>) -> Self {
Const {
interned: I::intern_const(interner, data.cast(interner)),
}
}
/// Gets the interned constant.
pub fn interned(&self) -> &I::InternedConst {
&self.interned
}
/// Gets the constant data from the interner.
pub fn data(&self, interner: I) -> &ConstData<I> {
I::const_data(interner, &self.interned)
}
/// If this is a `ConstData::BoundVar(d)`, returns `Some(d)` else `None`.
pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
if let ConstValue::BoundVar(bv) = &self.data(interner).value {
Some(*bv)
} else {
None
}
}
/// If this is a `ConstData::InferenceVar(d)`, returns `Some(d)` else `None`.
pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
if let ConstValue::InferenceVar(iv) = &self.data(interner).value {
Some(*iv)
} else {
None
}
}
/// True if this const is a "bound" const, and hence
/// needs to be shifted across binders. Meant for debug assertions.
pub fn needs_shift(&self, interner: I) -> bool {
match &self.data(interner).value {
ConstValue::BoundVar(_) => true,
ConstValue::InferenceVar(_) => false,
ConstValue::Placeholder(_) => false,
ConstValue::Concrete(_) => false,
}
}
}
/// Constant data, containing the constant's type and value.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub struct ConstData<I: Interner> {
/// Type that holds the constant.
pub ty: Ty<I>,
/// The value of the constant.
pub value: ConstValue<I>,
}
/// A constant value, not necessarily concrete.
#[derive(Clone, PartialEq, Eq, Hash, HasInterner)]
pub enum ConstValue<I: Interner> {
/// Bound var (e.g. a parameter).
BoundVar(BoundVar),
/// Constant whose value is being inferred.
InferenceVar(InferenceVar),
/// Lifetime on some yet-unknown placeholder.
Placeholder(PlaceholderIndex),
/// Concrete constant value.
Concrete(ConcreteConst<I>),
}
impl<I: Interner> Copy for ConstValue<I> where I::InternedConcreteConst: Copy {}
impl<I: Interner> ConstData<I> {
/// Wraps the constant data in a `Const`.
pub fn intern(self, interner: I) -> Const<I> {
Const::new(interner, self)
}
}
/// Concrete constant, whose value is known (as opposed to
/// inferred constants and placeholders).
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct ConcreteConst<I: Interner> {
/// The interned constant.
pub interned: I::InternedConcreteConst,
}
impl<I: Interner> ConcreteConst<I> {
/// Checks whether two concrete constants are equal.
pub fn const_eq(&self, ty: &Ty<I>, other: &ConcreteConst<I>, interner: I) -> bool {
interner.const_eq(&ty.interned, &self.interned, &other.interned)
}
}
/// A Rust lifetime.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct Lifetime<I: Interner> {
interned: I::InternedLifetime,
}
impl<I: Interner> Lifetime<I> {
/// Create a lifetime from lifetime data
/// (or something that can be cast to lifetime data).
pub fn new(interner: I, data: impl CastTo<LifetimeData<I>>) -> Self {
Lifetime {
interned: I::intern_lifetime(interner, data.cast(interner)),
}
}
/// Gets the interned value.
pub fn interned(&self) -> &I::InternedLifetime {
&self.interned
}
/// Gets the lifetime data.
pub fn data(&self, interner: I) -> &LifetimeData<I> {
I::lifetime_data(interner, &self.interned)
}
/// If this is a `Lifetime::BoundVar(d)`, returns `Some(d)` else `None`.
pub fn bound_var(&self, interner: I) -> Option<BoundVar> {
if let LifetimeData::BoundVar(bv) = self.data(interner) {
Some(*bv)
} else {
None
}
}
/// If this is a `Lifetime::InferenceVar(d)`, returns `Some(d)` else `None`.
pub fn inference_var(&self, interner: I) -> Option<InferenceVar> {
if let LifetimeData::InferenceVar(depth) = self.data(interner) {
Some(*depth)
} else {
None
}
}
/// True if this lifetime is a "bound" lifetime, and hence
/// needs to be shifted across binders. Meant for debug assertions.
pub fn needs_shift(&self, interner: I) -> bool {
match self.data(interner) {
LifetimeData::BoundVar(_) => true,
LifetimeData::InferenceVar(_) => false,
LifetimeData::Placeholder(_) => false,
LifetimeData::Static => false,
LifetimeData::Erased => false,
LifetimeData::Error => false,
LifetimeData::Phantom(..) => unreachable!(),
}
}
///compute type flags for Lifetime
fn compute_flags(&self, interner: I) -> TypeFlags {
match self.data(interner) {
LifetimeData::InferenceVar(_) => {
TypeFlags::HAS_RE_INFER
| TypeFlags::HAS_FREE_LOCAL_REGIONS
| TypeFlags::HAS_FREE_REGIONS
}
LifetimeData::Placeholder(_) => {
TypeFlags::HAS_RE_PLACEHOLDER
| TypeFlags::HAS_FREE_LOCAL_REGIONS
| TypeFlags::HAS_FREE_REGIONS
}
LifetimeData::Static => TypeFlags::HAS_FREE_REGIONS,
LifetimeData::Phantom(_, _) => TypeFlags::empty(),
LifetimeData::BoundVar(_) => TypeFlags::HAS_RE_LATE_BOUND,
LifetimeData::Erased => TypeFlags::HAS_RE_ERASED,
LifetimeData::Error => TypeFlags::HAS_RE_ERROR,
}
}
}
/// Lifetime data, including what kind of lifetime it is and what it points to.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub enum LifetimeData<I: Interner> {
/// See TyKind::BoundVar.
BoundVar(BoundVar),
/// Lifetime whose value is being inferred.
InferenceVar(InferenceVar),
/// Lifetime on some yet-unknown placeholder.
Placeholder(PlaceholderIndex),
/// Static lifetime
Static,
/// An erased lifetime, used by rustc to improve caching when we doesn't
/// care about lifetimes
Erased,
/// Lifetime on phantom data.
Phantom(Void, PhantomData<I>),
/// A lifetime that resulted from some error
Error,
}
impl<I: Interner> LifetimeData<I> {
/// Wrap the lifetime data in a lifetime.
pub fn intern(self, interner: I) -> Lifetime<I> {
Lifetime::new(interner, self)
}
}
/// Index of an universally quantified parameter in the environment.
/// Two indexes are required, the one of the universe itself
/// and the relative index inside the universe.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PlaceholderIndex {
/// Index *of* the universe.
pub ui: UniverseIndex,
/// Index *in* the universe.
pub idx: usize,
}
impl PlaceholderIndex {
/// Wrap the placeholder instance in a lifetime.
pub fn to_lifetime<I: Interner>(self, interner: I) -> Lifetime<I> {
LifetimeData::<I>::Placeholder(self).intern(interner)
}
/// Create an interned type.
pub fn to_ty<I: Interner>(self, interner: I) -> Ty<I> {
TyKind::Placeholder(self).intern(interner)
}
/// Wrap the placeholder index in a constant.
pub fn to_const<I: Interner>(self, interner: I, ty: Ty<I>) -> Const<I> {
ConstData {
ty,
value: ConstValue::Placeholder(self),
}
.intern(interner)
}
}
/// Represents some extra knowledge we may have about the type variable.
/// ```ignore
/// let x: &[u32];
/// let i = 1;
/// x[i]
/// ```
/// In this example, `i` is known to be some type of integer. We can infer that
/// it is `usize` because that is the only integer type that slices have an
/// `Index` impl for. `i` would have a `TyVariableKind` of `Integer` to guide the
/// inference process.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum TyVariableKind {
General,
Integer,
Float,
}
/// The "kind" of variable. Type, lifetime or constant.
#[derive(Clone, PartialEq, Eq, Hash)]
#[allow(missing_docs)]
pub enum VariableKind<I: Interner> {
Ty(TyVariableKind),
Lifetime,
Const(Ty<I>),
}
impl<I: Interner> interner::HasInterner for VariableKind<I> {
type Interner = I;
}
impl<I: Interner> Copy for VariableKind<I> where I::InternedType: Copy {}
impl<I: Interner> VariableKind<I> {
fn to_bound_variable(&self, interner: I, bound_var: BoundVar) -> GenericArg<I> {
match self {
VariableKind::Ty(_) => {
GenericArgData::Ty(TyKind::BoundVar(bound_var).intern(interner)).intern(interner)
}
VariableKind::Lifetime => {
GenericArgData::Lifetime(LifetimeData::BoundVar(bound_var).intern(interner))
.intern(interner)
}
VariableKind::Const(ty) => GenericArgData::Const(
ConstData {
ty: ty.clone(),
value: ConstValue::BoundVar(bound_var),
}
.intern(interner),
)
.intern(interner),
}
}
}
/// A generic argument, see `GenericArgData` for more information.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct GenericArg<I: Interner> {
interned: I::InternedGenericArg,
}
impl<I: Interner> GenericArg<I> {
/// Constructs a generic argument using `GenericArgData`.
pub fn new(interner: I, data: GenericArgData<I>) -> Self {
let interned = I::intern_generic_arg(interner, data);
GenericArg { interned }
}
/// Gets the interned value.
pub fn interned(&self) -> &I::InternedGenericArg {
&self.interned
}
/// Gets the underlying data.
pub fn data(&self, interner: I) -> &GenericArgData<I> {
I::generic_arg_data(interner, &self.interned)
}
/// Asserts that this is a type argument.
pub fn assert_ty_ref(&self, interner: I) -> &Ty<I> {
self.ty(interner).unwrap()
}
/// Asserts that this is a lifetime argument.
pub fn assert_lifetime_ref(&self, interner: I) -> &Lifetime<I> {
self.lifetime(interner).unwrap()
}
/// Asserts that this is a constant argument.
pub fn assert_const_ref(&self, interner: I) -> &Const<I> {
self.constant(interner).unwrap()
}
/// Checks whether the generic argument is a type.
pub fn is_ty(&self, interner: I) -> bool {
match self.data(interner) {
GenericArgData::Ty(_) => true,
GenericArgData::Lifetime(_) => false,
GenericArgData::Const(_) => false,
}
}
/// Returns the type if it is one, `None` otherwise.
pub fn ty(&self, interner: I) -> Option<&Ty<I>> {
match self.data(interner) {
GenericArgData::Ty(t) => Some(t),
_ => None,
}
}
/// Returns the lifetime if it is one, `None` otherwise.
pub fn lifetime(&self, interner: I) -> Option<&Lifetime<I>> {
match self.data(interner) {
GenericArgData::Lifetime(t) => Some(t),
_ => None,
}
}
/// Returns the constant if it is one, `None` otherwise.
pub fn constant(&self, interner: I) -> Option<&Const<I>> {
match self.data(interner) {
GenericArgData::Const(c) => Some(c),
_ => None,
}
}
/// Compute type flags for GenericArg<I>
fn compute_flags(&self, interner: I) -> TypeFlags {
match self.data(interner) {
GenericArgData::Ty(ty) => ty.data(interner).flags,
GenericArgData::Lifetime(lifetime) => lifetime.compute_flags(interner),
GenericArgData::Const(constant) => {
let data = constant.data(interner);
let flags = data.ty.data(interner).flags;
match data.value {
ConstValue::BoundVar(_) => flags,
ConstValue::InferenceVar(_) => {
flags | TypeFlags::HAS_CT_INFER | TypeFlags::STILL_FURTHER_SPECIALIZABLE
}
ConstValue::Placeholder(_) => {
flags
| TypeFlags::HAS_CT_PLACEHOLDER
| TypeFlags::STILL_FURTHER_SPECIALIZABLE
}
ConstValue::Concrete(_) => flags,
}
}
}
}
}
/// Generic arguments data.
#[derive(Clone, PartialEq, Eq, Hash, TypeVisitable, TypeFoldable, Zip)]
pub enum GenericArgData<I: Interner> {
/// Type argument
Ty(Ty<I>),
/// Lifetime argument
Lifetime(Lifetime<I>),
/// Constant argument
Const(Const<I>),
}
impl<I: Interner> Copy for GenericArgData<I>
where
I::InternedType: Copy,
I::InternedLifetime: Copy,
I::InternedConst: Copy,
{
}
impl<I: Interner> GenericArgData<I> {
/// Create an interned type.
pub fn intern(self, interner: I) -> GenericArg<I> {
GenericArg::new(interner, self)
}
}
/// A value with an associated variable kind.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct WithKind<I: Interner, T> {
/// The associated variable kind.
pub kind: VariableKind<I>,
/// The wrapped value.
value: T,
}
impl<I: Interner, T: Copy> Copy for WithKind<I, T> where I::InternedType: Copy {}
impl<I: Interner, T> HasInterner for WithKind<I, T> {
type Interner = I;
}
impl<I: Interner, T> From<WithKind<I, T>> for (VariableKind<I>, T) {
fn from(with_kind: WithKind<I, T>) -> Self {
(with_kind.kind, with_kind.value)
}
}
impl<I: Interner, T> WithKind<I, T> {
/// Creates a `WithKind` from a variable kind and a value.
pub fn new(kind: VariableKind<I>, value: T) -> Self {
Self { kind, value }
}
/// Maps the value in `WithKind`.
pub fn map<U, OP>(self, op: OP) -> WithKind<I, U>
where
OP: FnOnce(T) -> U,
{
WithKind {
kind: self.kind,
value: op(self.value),
}
}
/// Maps a function taking `WithKind<I, &T>` over `&WithKind<I, T>`.
pub fn map_ref<U, OP>(&self, op: OP) -> WithKind<I, U>
where
OP: FnOnce(&T) -> U,
{
WithKind {
kind: self.kind.clone(),
value: op(&self.value),
}
}
/// Extract the value, ignoring the variable kind.
pub fn skip_kind(&self) -> &T {
&self.value
}
}
/// A variable kind with universe index.
#[allow(type_alias_bounds)]
pub type CanonicalVarKind<I: Interner> = WithKind<I, UniverseIndex>;
/// An alias, which is a trait indirection such as a projection or opaque type.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum AliasTy<I: Interner> {
/// An associated type projection.
Projection(ProjectionTy<I>),
/// An opaque type.
Opaque(OpaqueTy<I>),
}
impl<I: Interner> Copy for AliasTy<I> where I::InternedSubstitution: Copy {}
impl<I: Interner> AliasTy<I> {
/// Create an interned type for this alias.
pub fn intern(self, interner: I) -> Ty<I> {
Ty::new(interner, self)
}
/// Compute type flags for aliases
fn compute_flags(&self, interner: I) -> TypeFlags {
match self {
AliasTy::Projection(projection_ty) => {
TypeFlags::HAS_TY_PROJECTION | projection_ty.substitution.compute_flags(interner)
}
AliasTy::Opaque(opaque_ty) => {
TypeFlags::HAS_TY_OPAQUE | opaque_ty.substitution.compute_flags(interner)
}
}
}
}
/// A projection `<P0 as TraitName<P1..Pn>>::AssocItem<Pn+1..Pm>`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct ProjectionTy<I: Interner> {
/// The id for the associated type member.
pub associated_ty_id: AssocTypeId<I>,
/// The substitution for the projection.
pub substitution: Substitution<I>,
}
impl<I: Interner> Copy for ProjectionTy<I> where I::InternedSubstitution: Copy {}
/// An opaque type `opaque type T<..>: Trait = HiddenTy`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct OpaqueTy<I: Interner> {
/// The id for the opaque type.
pub opaque_ty_id: OpaqueTyId<I>,
/// The substitution for the opaque type.
pub substitution: Substitution<I>,
}
impl<I: Interner> Copy for OpaqueTy<I> where I::InternedSubstitution: Copy {}
/// A trait reference describes the relationship between a type and a trait.
/// This can be used in two forms:
/// - `P0: Trait<P1..Pn>` (e.g. `i32: Copy`), which mentions that the type
/// implements the trait.
/// - `<P0 as Trait<P1..Pn>>` (e.g. `i32 as Copy`), which casts the type to
/// that specific trait.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct TraitRef<I: Interner> {
/// The trait id.
pub trait_id: TraitId<I>,
/// The substitution, containing both the `Self` type and the parameters.
pub substitution: Substitution<I>,
}
impl<I: Interner> Copy for TraitRef<I> where I::InternedSubstitution: Copy {}
impl<I: Interner> TraitRef<I> {
/// Gets all type parameters in this trait ref, including `Self`.
pub fn type_parameters(&self, interner: I) -> impl Iterator<Item = Ty<I>> + '_ {
self.substitution
.iter(interner)
.filter_map(move |p| p.ty(interner))
.cloned()
}
/// Gets the type parameters of the `Self` type in this trait ref.
pub fn self_type_parameter(&self, interner: I) -> Ty<I> {
self.type_parameters(interner).next().unwrap()
}
/// Construct a `FromEnv` using this trait ref.
pub fn from_env(self) -> FromEnv<I> {
FromEnv::Trait(self)
}
/// Construct a `WellFormed` using this trait ref.
pub fn well_formed(self) -> WellFormed<I> {
WellFormed::Trait(self)
}
}
/// Lifetime outlives, which for `'a: 'b` checks that the lifetime `'a`
/// is a superset of the value of `'b`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
#[allow(missing_docs)]
pub struct LifetimeOutlives<I: Interner> {
pub a: Lifetime<I>,
pub b: Lifetime<I>,
}
impl<I: Interner> Copy for LifetimeOutlives<I> where I::InternedLifetime: Copy {}
/// Type outlives, which for `T: 'a` checks that the type `T`
/// lives at least as long as the lifetime `'a`
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub struct TypeOutlives<I: Interner> {
/// The type which must outlive the given lifetime.
pub ty: Ty<I>,
/// The lifetime which the type must outlive.
pub lifetime: Lifetime<I>,
}
impl<I: Interner> Copy for TypeOutlives<I>
where
I::InternedLifetime: Copy,
I::InternedType: Copy,
{
}
/// Where clauses that can be written by a Rust programmer.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeSuperVisitable, HasInterner, Zip)]
pub enum WhereClause<I: Interner> {
/// Type implements a trait.
Implemented(TraitRef<I>),
/// Type is equal to an alias.
AliasEq(AliasEq<I>),
/// One lifetime outlives another.
LifetimeOutlives(LifetimeOutlives<I>),
/// Type outlives a lifetime.
TypeOutlives(TypeOutlives<I>),
}
impl<I: Interner> Copy for WhereClause<I>
where
I::InternedSubstitution: Copy,
I::InternedLifetime: Copy,
I::InternedType: Copy,
{
}
/// Checks whether a type or trait ref is well-formed.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum WellFormed<I: Interner> {
/// A predicate which is true when some trait ref is well-formed.
/// For example, given the following trait definitions:
///
/// ```notrust
/// trait Clone { ... }
/// trait Copy where Self: Clone { ... }
/// ```
///
/// then we have the following rule:
///
/// ```notrust
/// WellFormed(?Self: Copy) :- ?Self: Copy, WellFormed(?Self: Clone)
/// ```
Trait(TraitRef<I>),
/// A predicate which is true when some type is well-formed.
/// For example, given the following type definition:
///
/// ```notrust
/// struct Set<K> where K: Hash {
/// ...
/// }
/// ```
///
/// then we have the following rule: `WellFormedTy(Set<K>) :- Implemented(K: Hash)`.
Ty(Ty<I>),
}
impl<I: Interner> Copy for WellFormed<I>
where
I::InternedType: Copy,
I::InternedSubstitution: Copy,
{
}
/// Checks whether a type or trait ref can be derived from the contents of the environment.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum FromEnv<I: Interner> {
/// A predicate which enables deriving everything which should be true if we *know* that
/// some trait ref is well-formed. For example given the above trait definitions, we can use
/// `FromEnv(T: Copy)` to derive that `T: Clone`, like in:
///
/// ```notrust
/// forall<T> {
/// if (FromEnv(T: Copy)) {
/// T: Clone
/// }
/// }
/// ```
Trait(TraitRef<I>),
/// A predicate which enables deriving everything which should be true if we *know* that
/// some type is well-formed. For example given the above type definition, we can use
/// `FromEnv(Set<K>)` to derive that `K: Hash`, like in:
///
/// ```notrust
/// forall<K> {
/// if (FromEnv(Set<K>)) {
/// K: Hash
/// }
/// }
/// ```
Ty(Ty<I>),
}
impl<I: Interner> Copy for FromEnv<I>
where
I::InternedType: Copy,
I::InternedSubstitution: Copy,
{
}
/// A "domain goal" is a goal that is directly about Rust, rather than a pure
/// logical statement. As much as possible, the Chalk solver should avoid
/// decomposing this enum, and instead treat its values opaquely.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeSuperVisitable, HasInterner, Zip)]
pub enum DomainGoal<I: Interner> {
/// Simple goal that is true if the where clause is true.
Holds(WhereClause<I>),
/// True if the type or trait ref is well-formed.
WellFormed(WellFormed<I>),
/// True if the trait ref can be derived from in-scope where clauses.
FromEnv(FromEnv<I>),
/// True if the alias type can be normalized to some other type
Normalize(Normalize<I>),
/// True if a type is considered to have been "defined" by the current crate. This is true for
/// a `struct Foo { }` but false for a `#[upstream] struct Foo { }`. However, for fundamental types
/// like `Box<T>`, it is true if `T` is local.
IsLocal(Ty<I>),
/// True if a type is *not* considered to have been "defined" by the current crate. This is
/// false for a `struct Foo { }` but true for a `#[upstream] struct Foo { }`. However, for
/// fundamental types like `Box<T>`, it is true if `T` is upstream.
IsUpstream(Ty<I>),
/// True if a type and its input types are fully visible, known types. That is, there are no
/// unknown type parameters anywhere in this type.
///
/// More formally, for each struct S<P0..Pn>:
/// forall<P0..Pn> {
/// IsFullyVisible(S<P0...Pn>) :-
/// IsFullyVisible(P0),
/// ...
/// IsFullyVisible(Pn)
/// }
///
/// Note that any of these types can have lifetimes in their parameters too, but we only
/// consider type parameters.
IsFullyVisible(Ty<I>),
/// Used to dictate when trait impls are allowed in the current (local) crate based on the
/// orphan rules.
///
/// `LocalImplAllowed(T: Trait)` is true if the type T is allowed to impl trait Trait in
/// the current crate. Under the current rules, this is unconditionally true for all types if
/// the Trait is considered to be "defined" in the current crate. If that is not the case, then
/// `LocalImplAllowed(T: Trait)` can still be true if `IsLocal(T)` is true.
LocalImplAllowed(TraitRef<I>),
/// Used to activate the "compatible modality" rules. Rules that introduce predicates that have
/// to do with "all compatible universes" should depend on this clause so that they only apply
/// if this is present.
Compatible,
/// Used to indicate that a given type is in a downstream crate. Downstream crates contain the
/// current crate at some level of their dependencies.
///
/// Since chalk does not actually see downstream types, this is usually introduced with
/// implication on a fresh, universally quantified type.
///
/// forall<T> { if (DownstreamType(T)) { /* ... */ } }
///
/// This makes a new type `T` available and makes `DownstreamType(T)` provable for that type.
DownstreamType(Ty<I>),
/// Used to activate the "reveal mode", in which opaque (`impl Trait`) types can be equated
/// to their actual type.
Reveal,
/// Used to indicate that a trait is object safe.
ObjectSafe(TraitId<I>),
}
impl<I: Interner> Copy for DomainGoal<I>
where
I::InternedSubstitution: Copy,
I::InternedLifetime: Copy,
I::InternedType: Copy,
{
}
/// A where clause that can contain `forall<>` or `exists<>` quantifiers.
pub type QuantifiedWhereClause<I> = Binders<WhereClause<I>>;
impl<I: Interner> WhereClause<I> {
/// Turn a where clause into the WF version of it i.e.:
/// * `Implemented(T: Trait)` maps to `WellFormed(T: Trait)`
/// * `ProjectionEq(<T as Trait>::Item = Foo)` maps to `WellFormed(<T as Trait>::Item = Foo)`
/// * any other clause maps to itself
pub fn into_well_formed_goal(self, interner: I) -> DomainGoal<I> {
match self {
WhereClause::Implemented(trait_ref) => WellFormed::Trait(trait_ref).cast(interner),
wc => wc.cast(interner),
}
}
/// Same as `into_well_formed_goal` but with the `FromEnv` predicate instead of `WellFormed`.
pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
match self {
WhereClause::Implemented(trait_ref) => FromEnv::Trait(trait_ref).cast(interner),
wc => wc.cast(interner),
}
}
/// If where clause is a `TraitRef`, returns its trait id.
pub fn trait_id(&self) -> Option<TraitId<I>> {
match self {
WhereClause::Implemented(trait_ref) => Some(trait_ref.trait_id),
WhereClause::AliasEq(_) => None,
WhereClause::LifetimeOutlives(_) => None,
WhereClause::TypeOutlives(_) => None,
}
}
}
impl<I: Interner> QuantifiedWhereClause<I> {
/// As with `WhereClause::into_well_formed_goal`, but for a
/// quantified where clause. For example, `forall<T> {
/// Implemented(T: Trait)}` would map to `forall<T> {
/// WellFormed(T: Trait) }`.
pub fn into_well_formed_goal(self, interner: I) -> Binders<DomainGoal<I>> {
self.map(|wc| wc.into_well_formed_goal(interner))
}
/// As with `WhereClause::into_from_env_goal`, but mapped over any
/// binders. For example, `forall<T> {
/// Implemented(T: Trait)}` would map to `forall<T> {
/// FromEnv(T: Trait) }`.
pub fn into_from_env_goal(self, interner: I) -> Binders<DomainGoal<I>> {
self.map(|wc| wc.into_from_env_goal(interner))
}
/// If the underlying where clause is a `TraitRef`, returns its trait id.
pub fn trait_id(&self) -> Option<TraitId<I>> {
self.skip_binders().trait_id()
}
}
impl<I: Interner> DomainGoal<I> {
/// Convert `Implemented(...)` into `FromEnv(...)`, but leave other
/// goals unchanged.
pub fn into_from_env_goal(self, interner: I) -> DomainGoal<I> {
match self {
DomainGoal::Holds(wc) => wc.into_from_env_goal(interner),
goal => goal,
}
}
/// Lists generic arguments that are inputs to this domain goal.
pub fn inputs(&self, interner: I) -> Vec<GenericArg<I>> {
match self {
DomainGoal::Holds(WhereClause::AliasEq(alias_eq)) => {
vec![GenericArgData::Ty(alias_eq.alias.clone().intern(interner)).intern(interner)]
}
_ => Vec::new(),
}
}
}
/// Equality goal: tries to prove that two values are equal.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct EqGoal<I: Interner> {
pub a: GenericArg<I>,
pub b: GenericArg<I>,
}
impl<I: Interner> Copy for EqGoal<I> where I::InternedGenericArg: Copy {}
/// Subtype goal: tries to prove that `a` is a subtype of `b`
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct SubtypeGoal<I: Interner> {
pub a: Ty<I>,
pub b: Ty<I>,
}
impl<I: Interner> Copy for SubtypeGoal<I> where I::InternedType: Copy {}
/// Proves that the given type alias **normalizes** to the given
/// type. A projection `T::Foo` normalizes to the type `U` if we can
/// **match it to an impl** and that impl has a `type Foo = V` where
/// `U = V`.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct Normalize<I: Interner> {
pub alias: AliasTy<I>,
pub ty: Ty<I>,
}
impl<I: Interner> Copy for Normalize<I>
where
I::InternedSubstitution: Copy,
I::InternedType: Copy,
{
}
/// Proves **equality** between an alias and a type.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, Zip)]
#[allow(missing_docs)]
pub struct AliasEq<I: Interner> {
pub alias: AliasTy<I>,
pub ty: Ty<I>,
}
impl<I: Interner> Copy for AliasEq<I>
where
I::InternedSubstitution: Copy,
I::InternedType: Copy,
{
}
impl<I: Interner> HasInterner for AliasEq<I> {
type Interner = I;
}
/// Indicates that the `value` is universally quantified over `N`
/// parameters of the given kinds, where `N == self.binders.len()`. A
/// variable with depth `i < N` refers to the value at
/// `self.binders[i]`. Variables with depth `>= N` are free.
///
/// (IOW, we use deBruijn indices, where binders are introduced in reverse order
/// of `self.binders`.)
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Binders<T: HasInterner> {
/// The binders that quantify over the value.
pub binders: VariableKinds<T::Interner>,
/// The value being quantified over.
value: T,
}
impl<T: HasInterner + Copy> Copy for Binders<T> where
<T::Interner as Interner>::InternedVariableKinds: Copy
{
}
impl<T: HasInterner> HasInterner for Binders<T> {
type Interner = T::Interner;
}
impl<T: Clone + HasInterner> Binders<&T> {
/// Converts a `Binders<&T>` to a `Binders<T>` by cloning `T`.
pub fn cloned(self) -> Binders<T> {
self.map(Clone::clone)
}
}
impl<T: HasInterner> Binders<T> {
/// Create new binders.
pub fn new(binders: VariableKinds<T::Interner>, value: T) -> Self {
Self { binders, value }
}
/// Wraps the given value in a binder without variables, i.e. `for<>
/// (value)`. Since our deBruijn indices count binders, not variables, this
/// is sometimes useful.
pub fn empty(interner: T::Interner, value: T) -> Self {
let binders = VariableKinds::empty(interner);
Self { binders, value }
}
/// Skips the binder and returns the "bound" value. This is a
/// risky thing to do because it's easy to get confused about
/// De Bruijn indices and the like. `skip_binder` is only valid
/// when you are either extracting data that has nothing to
/// do with bound vars, or you are being very careful about
/// your depth accounting.
///
/// Some examples where `skip_binder` is reasonable:
///
/// - extracting the `TraitId` from a TraitRef;
/// - checking if there are any fields in a StructDatum
pub fn skip_binders(&self) -> &T {
&self.value
}
/// Skips the binder and returns the "bound" value as well as the skipped free variables. This
/// is just as risky as [`skip_binders`][Self::skip_binders].
pub fn into_value_and_skipped_binders(self) -> (T, VariableKinds<T::Interner>) {
(self.value, self.binders)
}
/// Converts `&Binders<T>` to `Binders<&T>`. Produces new `Binders`
/// with cloned quantifiers containing a reference to the original
/// value, leaving the original in place.
pub fn as_ref(&self) -> Binders<&T> {
Binders {
binders: self.binders.clone(),
value: &self.value,
}
}
/// Maps the binders by applying a function.
pub fn map<U, OP>(self, op: OP) -> Binders<U>
where
OP: FnOnce(T) -> U,
U: HasInterner<Interner = T::Interner>,
{
let value = op(self.value);
Binders {
binders: self.binders,
value,
}
}
/// Transforms the inner value according to the given function; returns
/// `None` if the function returns `None`.
pub fn filter_map<U, OP>(self, op: OP) -> Option<Binders<U>>
where
OP: FnOnce(T) -> Option<U>,
U: HasInterner<Interner = T::Interner>,
{
let value = op(self.value)?;
Some(Binders {
binders: self.binders,
value,
})
}
/// Maps a function taking `Binders<&T>` over `&Binders<T>`.
pub fn map_ref<'a, U, OP>(&'a self, op: OP) -> Binders<U>
where
OP: FnOnce(&'a T) -> U,
U: HasInterner<Interner = T::Interner>,
{
self.as_ref().map(op)
}
/// Creates a `Substitution` containing bound vars such that applying this
/// substitution will not change the value, i.e. `^0.0, ^0.1, ^0.2` and so
/// on.
pub fn identity_substitution(&self, interner: T::Interner) -> Substitution<T::Interner> {
Substitution::from_iter(
interner,
self.binders
.iter(interner)
.enumerate()
.map(|p| p.to_generic_arg(interner)),
)
}
/// Creates a fresh binders that contains a single type
/// variable. The result of the closure will be embedded in this
/// binder. Note that you should be careful with what you return
/// from the closure to account for the binder that will be added.
///
/// XXX FIXME -- this is potentially a pretty footgun-y function.
pub fn with_fresh_type_var(
interner: T::Interner,
op: impl FnOnce(Ty<T::Interner>) -> T,
) -> Binders<T> {
// The new variable is at the front and everything afterwards is shifted up by 1
let new_var = TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)).intern(interner);
let value = op(new_var);
let binders = VariableKinds::from1(interner, VariableKind::Ty(TyVariableKind::General));
Binders { binders, value }
}
/// Returns the number of binders.
pub fn len(&self, interner: T::Interner) -> usize {
self.binders.len(interner)
}
}
impl<T, I> Binders<Binders<T>>
where
T: TypeFoldable<I> + HasInterner<Interner = I>,
I: Interner,
{
/// This turns two levels of binders (`for<A> for<B>`) into one level (`for<A, B>`).
pub fn fuse_binders(self, interner: T::Interner) -> Binders<T> {
let num_binders = self.len(interner);
// generate a substitution to shift the indexes of the inner binder:
let subst = Substitution::from_iter(
interner,
self.value
.binders
.iter(interner)
.enumerate()
.map(|(i, pk)| (i + num_binders, pk).to_generic_arg(interner)),
);
let binders = VariableKinds::from_iter(
interner,
self.binders
.iter(interner)
.chain(self.value.binders.iter(interner))
.cloned(),
);
let value = self.value.substitute(interner, &subst);
Binders { binders, value }
}
}
impl<T: HasInterner> From<Binders<T>> for (VariableKinds<T::Interner>, T) {
fn from(binders: Binders<T>) -> Self {
(binders.binders, binders.value)
}
}
impl<T, I> Binders<T>
where
T: TypeFoldable<I> + HasInterner<Interner = I>,
I: Interner,
{
/// Substitute `parameters` for the variables introduced by these
/// binders. So if the binders represent (e.g.) `<X, Y> { T }` and
/// parameters is the slice `[A, B]`, then returns `[X => A, Y =>
/// B] T`.
pub fn substitute(self, interner: I, parameters: &(impl AsParameters<I> + ?Sized)) -> T {
let parameters = parameters.as_parameters(interner);
assert_eq!(self.binders.len(interner), parameters.len());
Subst::apply(interner, parameters, self.value)
}
}
/// Allows iterating over a Binders<Vec<T>>, for instance.
/// Each element will include the same set of parameter bounds.
impl<V, U> IntoIterator for Binders<V>
where
V: HasInterner + IntoIterator<Item = U>,
U: HasInterner<Interner = V::Interner>,
{
type Item = Binders<U>;
type IntoIter = BindersIntoIterator<V>;
fn into_iter(self) -> Self::IntoIter {
BindersIntoIterator {
iter: self.value.into_iter(),
binders: self.binders,
}
}
}
/// `IntoIterator` for binders.
pub struct BindersIntoIterator<V: HasInterner + IntoIterator> {
iter: <V as IntoIterator>::IntoIter,
binders: VariableKinds<V::Interner>,
}
impl<V> Iterator for BindersIntoIterator<V>
where
V: HasInterner + IntoIterator,
<V as IntoIterator>::Item: HasInterner<Interner = V::Interner>,
{
type Item = Binders<<V as IntoIterator>::Item>;
fn next(&mut self) -> Option<Self::Item> {
self.iter
.next()
.map(|v| Binders::new(self.binders.clone(), v))
}
}
/// Represents one clause of the form `consequence :- conditions` where
/// `conditions = cond_1 && cond_2 && ...` is the conjunction of the individual
/// conditions.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub struct ProgramClauseImplication<I: Interner> {
/// The consequence of the clause, which holds if the conditions holds.
pub consequence: DomainGoal<I>,
/// The condition goals that should hold.
pub conditions: Goals<I>,
/// The lifetime constraints that should be proven.
pub constraints: Constraints<I>,
/// The relative priority of the implication.
pub priority: ClausePriority,
}
/// Specifies how important an implication is.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum ClausePriority {
/// High priority, the solver should prioritize this.
High,
/// Low priority, this implication has lower chance to be relevant to the goal.
Low,
}
impl std::ops::BitAnd for ClausePriority {
type Output = ClausePriority;
fn bitand(self, rhs: ClausePriority) -> Self::Output {
match (self, rhs) {
(ClausePriority::High, ClausePriority::High) => ClausePriority::High,
_ => ClausePriority::Low,
}
}
}
/// Contains the data for a program clause.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, HasInterner, Zip)]
pub struct ProgramClauseData<I: Interner>(pub Binders<ProgramClauseImplication<I>>);
impl<I: Interner> ProgramClauseImplication<I> {
/// Change the implication into an application holding a `FromEnv` goal.
pub fn into_from_env_clause(self, interner: I) -> ProgramClauseImplication<I> {
if self.conditions.is_empty(interner) {
ProgramClauseImplication {
consequence: self.consequence.into_from_env_goal(interner),
conditions: self.conditions.clone(),
constraints: self.constraints.clone(),
priority: self.priority,
}
} else {
self
}
}
}
impl<I: Interner> ProgramClauseData<I> {
/// Change the program clause data into a `FromEnv` program clause.
pub fn into_from_env_clause(self, interner: I) -> ProgramClauseData<I> {
ProgramClauseData(self.0.map(|i| i.into_from_env_clause(interner)))
}
/// Intern the program clause data.
pub fn intern(self, interner: I) -> ProgramClause<I> {
ProgramClause {
interned: interner.intern_program_clause(self),
}
}
}
/// A program clause is a logic expression used to describe a part of the program.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct ProgramClause<I: Interner> {
interned: I::InternedProgramClause,
}
impl<I: Interner> ProgramClause<I> {
/// Create a new program clause using `ProgramClauseData`.
pub fn new(interner: I, clause: ProgramClauseData<I>) -> Self {
let interned = interner.intern_program_clause(clause);
Self { interned }
}
/// Change the clause into a `FromEnv` clause.
pub fn into_from_env_clause(self, interner: I) -> ProgramClause<I> {
let program_clause_data = self.data(interner);
let new_clause = program_clause_data.clone().into_from_env_clause(interner);
Self::new(interner, new_clause)
}
/// Get the interned program clause.
pub fn interned(&self) -> &I::InternedProgramClause {
&self.interned
}
/// Get the program clause data.
pub fn data(&self, interner: I) -> &ProgramClauseData<I> {
interner.program_clause_data(&self.interned)
}
}
/// Wraps a "canonicalized item". Items are canonicalized as follows:
///
/// All unresolved existential variables are "renumbered" according to their
/// first appearance; the kind/universe of the variable is recorded in the
/// `binders` field.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Canonical<T: HasInterner> {
/// The item that is canonicalized.
pub value: T,
/// The kind/universe of the variable.
pub binders: CanonicalVarKinds<T::Interner>,
}
impl<T: HasInterner> HasInterner for Canonical<T> {
type Interner = T::Interner;
}
/// A "universe canonical" value. This is a wrapper around a
/// `Canonical`, indicating that the universes within have been
/// "renumbered" to start from 0 and collapse unimportant
/// distinctions.
///
/// To produce one of these values, use the `u_canonicalize` method.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct UCanonical<T: HasInterner> {
/// The wrapped `Canonical`.
pub canonical: Canonical<T>,
/// The number of universes that have been collapsed.
pub universes: usize,
}
impl<T: HasInterner> UCanonical<T> {
/// Checks whether the universe canonical value is a trivial
/// substitution (e.g. an identity substitution).
pub fn is_trivial_substitution(
&self,
interner: T::Interner,
canonical_subst: &Canonical<AnswerSubst<T::Interner>>,
) -> bool {
let subst = &canonical_subst.value.subst;
assert_eq!(
self.canonical.binders.len(interner),
subst.as_slice(interner).len()
);
subst.is_identity_subst(interner)
}
/// Creates an identity substitution.
pub fn trivial_substitution(&self, interner: T::Interner) -> Substitution<T::Interner> {
let binders = &self.canonical.binders;
Substitution::from_iter(
interner,
binders
.iter(interner)
.enumerate()
.map(|(index, pk)| {
let bound_var = BoundVar::new(DebruijnIndex::INNERMOST, index);
match &pk.kind {
VariableKind::Ty(_) => {
GenericArgData::Ty(TyKind::BoundVar(bound_var).intern(interner))
.intern(interner)
}
VariableKind::Lifetime => GenericArgData::Lifetime(
LifetimeData::BoundVar(bound_var).intern(interner),
)
.intern(interner),
VariableKind::Const(ty) => GenericArgData::Const(
ConstData {
ty: ty.clone(),
value: ConstValue::BoundVar(bound_var),
}
.intern(interner),
)
.intern(interner),
}
})
.collect::<Vec<_>>(),
)
}
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
/// A general goal; this is the full range of questions you can pose to Chalk.
pub struct Goal<I: Interner> {
interned: I::InternedGoal,
}
impl<I: Interner> Goal<I> {
/// Create a new goal using `GoalData`.
pub fn new(interner: I, interned: GoalData<I>) -> Self {
let interned = I::intern_goal(interner, interned);
Self { interned }
}
/// Gets the interned goal.
pub fn interned(&self) -> &I::InternedGoal {
&self.interned
}
/// Gets the interned goal data.
pub fn data(&self, interner: I) -> &GoalData<I> {
interner.goal_data(&self.interned)
}
/// Create a goal using a `forall` or `exists` quantifier.
pub fn quantify(self, interner: I, kind: QuantifierKind, binders: VariableKinds<I>) -> Goal<I> {
GoalData::Quantified(kind, Binders::new(binders, self)).intern(interner)
}
/// Takes a goal `G` and turns it into `not { G }`.
pub fn negate(self, interner: I) -> Self {
GoalData::Not(self).intern(interner)
}
/// Takes a goal `G` and turns it into `compatible { G }`.
pub fn compatible(self, interner: I) -> Self {
// compatible { G } desugars into: forall<T> { if (Compatible, DownstreamType(T)) { G } }
// This activates the compatible modality rules and introduces an anonymous downstream type
GoalData::Quantified(
QuantifierKind::ForAll,
Binders::with_fresh_type_var(interner, |ty| {
GoalData::Implies(
ProgramClauses::from_iter(
interner,
vec![DomainGoal::Compatible, DomainGoal::DownstreamType(ty)],
),
self.shifted_in(interner),
)
.intern(interner)
}),
)
.intern(interner)
}
/// Create an implication goal that holds if the predicates are true.
pub fn implied_by(self, interner: I, predicates: ProgramClauses<I>) -> Goal<I> {
GoalData::Implies(predicates, self).intern(interner)
}
/// True if this goal is "trivially true" -- i.e., no work is
/// required to prove it.
pub fn is_trivially_true(&self, interner: I) -> bool {
match self.data(interner) {
GoalData::All(goals) => goals.is_empty(interner),
_ => false,
}
}
}
impl<I> Goal<I>
where
I: Interner,
{
/// Creates a single goal that only holds if a list of goals holds.
pub fn all<II>(interner: I, iter: II) -> Self
where
II: IntoIterator<Item = Goal<I>>,
{
let mut iter = iter.into_iter();
if let Some(goal0) = iter.next() {
if let Some(goal1) = iter.next() {
// More than one goal to prove
let goals = Goals::from_iter(
interner,
Some(goal0).into_iter().chain(Some(goal1)).chain(iter),
);
GoalData::All(goals).intern(interner)
} else {
// One goal to prove
goal0
}
} else {
// No goals to prove, always true
GoalData::All(Goals::empty(interner)).intern(interner)
}
}
}
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
/// A general goal; this is the full range of questions you can pose to Chalk.
pub enum GoalData<I: Interner> {
/// Introduces a binding at depth 0, shifting other bindings up
/// (deBruijn index).
Quantified(QuantifierKind, Binders<Goal<I>>),
/// A goal that holds given some clauses (like an if-statement).
Implies(ProgramClauses<I>, Goal<I>),
/// List of goals that all should hold.
All(Goals<I>),
/// Negation: the inner goal should not hold.
Not(Goal<I>),
/// Make two things equal; the rules for doing so are well known to the logic
EqGoal(EqGoal<I>),
/// Make one thing a subtype of another; the rules for doing so are well known to the logic
SubtypeGoal(SubtypeGoal<I>),
/// A "domain goal" indicates some base sort of goal that can be
/// proven via program clauses
DomainGoal(DomainGoal<I>),
/// Indicates something that cannot be proven to be true or false
/// definitively. This can occur with overflow but also with
/// unifications of skolemized variables like `forall<X,Y> { X = Y
/// }`. Of course, that statement is false, as there exist types
/// X, Y where `X = Y` is not true. But we treat it as "cannot
/// prove" so that `forall<X,Y> { not { X = Y } }` also winds up
/// as cannot prove.
CannotProve,
}
impl<I: Interner> Copy for GoalData<I>
where
I::InternedType: Copy,
I::InternedLifetime: Copy,
I::InternedGenericArg: Copy,
I::InternedSubstitution: Copy,
I::InternedGoal: Copy,
I::InternedGoals: Copy,
I::InternedProgramClauses: Copy,
I::InternedVariableKinds: Copy,
{
}
impl<I: Interner> GoalData<I> {
/// Create an interned goal.
pub fn intern(self, interner: I) -> Goal<I> {
Goal::new(interner, self)
}
}
/// Kinds of quantifiers in the logic, such as `forall` and `exists`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum QuantifierKind {
/// Universal quantifier `ForAll`.
///
/// A formula with the universal quantifier `forall(x). P(x)` is satisfiable
/// if and only if the subformula `P(x)` is true for all possible values for x.
ForAll,
/// Existential quantifier `Exists`.
///
/// A formula with the existential quantifier `exists(x). P(x)` is satisfiable
/// if and only if there exists at least one value for all possible values of x
/// which satisfies the subformula `P(x)`.
/// In the context of chalk, the existential quantifier usually demands the
/// existence of exactly one instance (i.e. type) that satisfies the formula
/// (i.e. type constraints). More than one instance means that the result is ambiguous.
Exists,
}
/// A constraint on lifetimes.
///
/// When we search for solutions within the trait system, we essentially ignore
/// lifetime constraints, instead gathering them up to return with our solution
/// for later checking. This allows for decoupling between type and region
/// checking in the compiler.
#[derive(Clone, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner, Zip)]
pub enum Constraint<I: Interner> {
/// Outlives constraint `'a: 'b`, indicating that the value of `'a` must be
/// a superset of the value of `'b`.
LifetimeOutlives(Lifetime<I>, Lifetime<I>),
/// Type outlives constraint `T: 'a`, indicating that the type `T` must live
/// at least as long as the value of `'a`.
TypeOutlives(Ty<I>, Lifetime<I>),
}
impl<I: Interner> Copy for Constraint<I>
where
I::InternedLifetime: Copy,
I::InternedType: Copy,
{
}
impl<I: Interner> Substitution<I> {
/// A substitution is an **identity substitution** if it looks
/// like this
///
/// ```text
/// ?0 := ?0
/// ?1 := ?1
/// ?2 := ?2
/// ...
/// ```
///
/// Basically, each value is mapped to a type or lifetime with its
/// same index.
pub fn is_identity_subst(&self, interner: I) -> bool {
self.iter(interner).zip(0..).all(|(generic_arg, index)| {
let index_db = BoundVar::new(DebruijnIndex::INNERMOST, index);
match generic_arg.data(interner) {
GenericArgData::Ty(ty) => match ty.kind(interner) {
TyKind::BoundVar(depth) => index_db == *depth,
_ => false,
},
GenericArgData::Lifetime(lifetime) => match lifetime.data(interner) {
LifetimeData::BoundVar(depth) => index_db == *depth,
_ => false,
},
GenericArgData::Const(constant) => match &constant.data(interner).value {
ConstValue::BoundVar(depth) => index_db == *depth,
_ => false,
},
}
})
}
/// Apply the substitution to a value.
pub fn apply<T>(&self, value: T, interner: I) -> T
where
T: TypeFoldable<I>,
{
Substitute::apply(self, value, interner)
}
/// Gets an iterator of all type parameters.
pub fn type_parameters(&self, interner: I) -> impl Iterator<Item = Ty<I>> + '_ {
self.iter(interner)
.filter_map(move |p| p.ty(interner))
.cloned()
}
/// Compute type flags for Substitution<I>
fn compute_flags(&self, interner: I) -> TypeFlags {
let mut flags = TypeFlags::empty();
for generic_arg in self.iter(interner) {
flags |= generic_arg.compute_flags(interner);
}
flags
}
}
#[derive(FallibleTypeFolder)]
struct SubstFolder<'i, I: Interner, A: AsParameters<I>> {
interner: I,
subst: &'i A,
}
impl<I: Interner, A: AsParameters<I>> SubstFolder<'_, I, A> {
/// Index into the list of parameters.
pub fn at(&self, index: usize) -> &GenericArg<I> {
let interner = self.interner;
&self.subst.as_parameters(interner)[index]
}
}
/// Convert a value to a list of parameters.
pub trait AsParameters<I: Interner> {
/// Convert the current value to parameters.
fn as_parameters(&self, interner: I) -> &[GenericArg<I>];
}
impl<I: Interner> AsParameters<I> for Substitution<I> {
#[allow(unreachable_code, unused_variables)]
fn as_parameters(&self, interner: I) -> &[GenericArg<I>] {
self.as_slice(interner)
}
}
impl<I: Interner> AsParameters<I> for [GenericArg<I>] {
fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
self
}
}
impl<I: Interner> AsParameters<I> for [GenericArg<I>; 1] {
fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
self
}
}
impl<I: Interner> AsParameters<I> for Vec<GenericArg<I>> {
fn as_parameters(&self, _interner: I) -> &[GenericArg<I>] {
self
}
}
impl<T, I: Interner> AsParameters<I> for &T
where
T: ?Sized + AsParameters<I>,
{
fn as_parameters(&self, interner: I) -> &[GenericArg<I>] {
T::as_parameters(self, interner)
}
}
/// An extension trait to anything that can be represented as list of `GenericArg`s that signifies
/// that it can applied as a substituion to a value
pub trait Substitute<I: Interner>: AsParameters<I> {
/// Apply the substitution to a value.
fn apply<T: TypeFoldable<I>>(&self, value: T, interner: I) -> T;
}
impl<I: Interner, A: AsParameters<I>> Substitute<I> for A {
fn apply<T>(&self, value: T, interner: I) -> T
where
T: TypeFoldable<I>,
{
value
.try_fold_with(
&mut SubstFolder {
interner,
subst: self,
},
DebruijnIndex::INNERMOST,
)
.unwrap()
}
}
/// Utility for converting a list of all the binders into scope
/// into references to those binders. Simply pair the binders with
/// the indices, and invoke `to_generic_arg()` on the `(binder,
/// index)` pair. The result will be a reference to a bound
/// variable of appropriate kind at the corresponding index.
pub trait ToGenericArg<I: Interner> {
/// Converts the binders in scope to references to those binders.
fn to_generic_arg(&self, interner: I) -> GenericArg<I> {
self.to_generic_arg_at_depth(interner, DebruijnIndex::INNERMOST)
}
/// Converts the binders at the specified depth to references to those binders.
fn to_generic_arg_at_depth(&self, interner: I, debruijn: DebruijnIndex) -> GenericArg<I>;
}
impl<'a, I: Interner> ToGenericArg<I> for (usize, &'a VariableKind<I>) {
fn to_generic_arg_at_depth(&self, interner: I, debruijn: DebruijnIndex) -> GenericArg<I> {
let &(index, binder) = self;
let bound_var = BoundVar::new(debruijn, index);
binder.to_bound_variable(interner, bound_var)
}
}
impl<'i, I: Interner, A: AsParameters<I>> TypeFolder<I> for SubstFolder<'i, I, A> {
fn as_dyn(&mut self) -> &mut dyn TypeFolder<I> {
self
}
fn fold_free_var_ty(&mut self, bound_var: BoundVar, outer_binder: DebruijnIndex) -> Ty<I> {
assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
let ty = self.at(bound_var.index);
let ty = ty.assert_ty_ref(TypeFolder::interner(self));
ty.clone()
.shifted_in_from(TypeFolder::interner(self), outer_binder)
}
fn fold_free_var_lifetime(
&mut self,
bound_var: BoundVar,
outer_binder: DebruijnIndex,
) -> Lifetime<I> {
assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
let l = self.at(bound_var.index);
let l = l.assert_lifetime_ref(TypeFolder::interner(self));
l.clone()
.shifted_in_from(TypeFolder::interner(self), outer_binder)
}
fn fold_free_var_const(
&mut self,
_ty: Ty<I>,
bound_var: BoundVar,
outer_binder: DebruijnIndex,
) -> Const<I> {
assert_eq!(bound_var.debruijn, DebruijnIndex::INNERMOST);
let c = self.at(bound_var.index);
let c = c.assert_const_ref(TypeFolder::interner(self));
c.clone()
.shifted_in_from(TypeFolder::interner(self), outer_binder)
}
fn interner(&self) -> I {
self.interner
}
}
macro_rules! interned_slice_common {
($seq:ident, $data:ident => $elem:ty, $intern:ident => $interned:ident) => {
/// List of interned elements.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, HasInterner)]
pub struct $seq<I: Interner> {
interned: I::$interned,
}
impl<I: Interner> $seq<I> {
/// Get the interned elements.
pub fn interned(&self) -> &I::$interned {
&self.interned
}
/// Returns a slice containing the elements.
pub fn as_slice(&self, interner: I) -> &[$elem] {
Interner::$data(interner, &self.interned)
}
/// Index into the sequence.
pub fn at(&self, interner: I, index: usize) -> &$elem {
&self.as_slice(interner)[index]
}
/// Create an empty sequence.
pub fn empty(interner: I) -> Self {
Self::from_iter(interner, None::<$elem>)
}
/// Check whether this is an empty sequence.
pub fn is_empty(&self, interner: I) -> bool {
self.as_slice(interner).is_empty()
}
/// Get an iterator over the elements of the sequence.
pub fn iter(&self, interner: I) -> std::slice::Iter<'_, $elem> {
self.as_slice(interner).iter()
}
/// Get the length of the sequence.
pub fn len(&self, interner: I) -> usize {
self.as_slice(interner).len()
}
}
};
}
macro_rules! interned_slice {
($seq:ident, $data:ident => $elem:ty, $intern:ident => $interned:ident) => {
interned_slice_common!($seq, $data => $elem, $intern => $interned);
impl<I: Interner> $seq<I> {
/// Tries to create a sequence using an iterator of element-like things.
pub fn from_fallible<E>(
interner: I,
elements: impl IntoIterator<Item = Result<impl CastTo<$elem>, E>>,
) -> Result<Self, E> {
Ok(Self {
interned: I::$intern(interner, elements.into_iter().casted(interner))?,
})
}
/// Create a sequence from elements
pub fn from_iter(
interner: I,
elements: impl IntoIterator<Item = impl CastTo<$elem>>,
) -> Self {
Self::from_fallible(
interner,
elements
.into_iter()
.map(|el| -> Result<$elem, ()> { Ok(el.cast(interner)) }),
)
.unwrap()
}
/// Create a sequence from a single element.
pub fn from1(interner: I, element: impl CastTo<$elem>) -> Self {
Self::from_iter(interner, Some(element))
}
}
};
}
interned_slice!(
QuantifiedWhereClauses,
quantified_where_clauses_data => QuantifiedWhereClause<I>,
intern_quantified_where_clauses => InternedQuantifiedWhereClauses
);
interned_slice!(
ProgramClauses,
program_clauses_data => ProgramClause<I>,
intern_program_clauses => InternedProgramClauses
);
interned_slice!(
VariableKinds,
variable_kinds_data => VariableKind<I>,
intern_generic_arg_kinds => InternedVariableKinds
);
interned_slice!(
CanonicalVarKinds,
canonical_var_kinds_data => CanonicalVarKind<I>,
intern_canonical_var_kinds => InternedCanonicalVarKinds
);
interned_slice!(Goals, goals_data => Goal<I>, intern_goals => InternedGoals);
interned_slice!(
Constraints,
constraints_data => InEnvironment<Constraint<I>>,
intern_constraints => InternedConstraints
);
interned_slice!(
Substitution,
substitution_data => GenericArg<I>,
intern_substitution => InternedSubstitution
);
interned_slice_common!(
Variances,
variances_data => Variance,
intern_variance => InternedVariances
);
impl<I: Interner> Variances<I> {
/// Tries to create a list of canonical variable kinds using an iterator.
pub fn from_fallible<E>(
interner: I,
variances: impl IntoIterator<Item = Result<Variance, E>>,
) -> Result<Self, E> {
Ok(Variances {
interned: I::intern_variances(interner, variances.into_iter())?,
})
}
/// Creates a list of canonical variable kinds using an iterator.
pub fn from_iter(interner: I, variances: impl IntoIterator<Item = Variance>) -> Self {
Self::from_fallible(
interner,
variances
.into_iter()
.map(|p| -> Result<Variance, ()> { Ok(p) }),
)
.unwrap()
}
/// Creates a list of canonical variable kinds from a single canonical variable kind.
pub fn from1(interner: I, variance: Variance) -> Self {
Self::from_iter(interner, Some(variance))
}
}
/// Combines a substitution (`subst`) with a set of region constraints
/// (`constraints`). This represents the result of a query; the
/// substitution stores the values for the query's unknown variables,
/// and the constraints represents any region constraints that must
/// additionally be solved.
#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct ConstrainedSubst<I: Interner> {
/// The substitution that is being constrained.
///
/// NB: The `is_trivial` routine relies on the fact that `subst` is folded first.
pub subst: Substitution<I>,
/// Region constraints that constrain the substitution.
pub constraints: Constraints<I>,
}
/// The resulting substitution after solving a goal.
#[derive(Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable, HasInterner)]
pub struct AnswerSubst<I: Interner> {
/// The substitution result.
///
/// NB: The `is_trivial` routine relies on the fact that `subst` is folded first.
pub subst: Substitution<I>,
/// List of constraints that are part of the answer.
pub constraints: Constraints<I>,
/// Delayed subgoals, used when the solver answered with an (incomplete) `Answer` (instead of a `CompleteAnswer`).
pub delayed_subgoals: Vec<InEnvironment<Goal<I>>>,
}
/// Logic to decide the Variance for a given subst
pub trait UnificationDatabase<I>
where
Self: std::fmt::Debug,
I: Interner,
{
/// Gets the variances for the substitution of a fn def
fn fn_def_variance(&self, fn_def_id: FnDefId<I>) -> Variances<I>;
/// Gets the variances for the substitution of a adt
fn adt_variance(&self, adt_id: AdtId<I>) -> Variances<I>;
}