1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
#![deny(rust_2018_idioms)]
use crate::display::sanitize_debug_name;
use crate::rust_ir::*;
use chalk_ir::interner::Interner;
use chalk_ir::*;
use std::fmt::Debug;
use std::sync::Arc;
pub mod clauses;
pub mod coherence;
pub mod coinductive_goal;
pub mod display;
pub mod ext;
pub mod goal_builder;
pub mod infer;
pub mod logging;
pub mod logging_db;
pub mod rust_ir;
pub mod solve;
pub mod split;
pub mod wf;
/// Trait representing access to a database of rust types.
///
/// # `*_name` methods
///
/// This trait has a number of `*_name` methods with default implementations.
/// These are used in the implementation for [`LoggingRustIrDatabase`], so that
/// when printing `.chalk` files equivalent to the data used, we can use real
/// names.
///
/// The default implementations simply fall back to calling [`Interner`] debug
/// methods, and printing `"UnknownN"` (where `N` is the demultiplexing integer)
/// if those methods return `None`.
///
/// The [`display::sanitize_debug_name`] utility is used in the default
/// implementations, and might be useful when providing custom implementations.
///
/// [`LoggingRustIrDatabase`]: crate::logging_db::LoggingRustIrDatabase
/// [`display::sanitize_debug_name`]: crate::display::sanitize_debug_name
/// [`Interner`]: Interner
pub trait RustIrDatabase<I: Interner>: Debug {
/// Returns any "custom program clauses" that do not derive from
/// Rust IR. Used only in testing the underlying solver.
fn custom_clauses(&self) -> Vec<ProgramClause<I>>;
/// Returns the datum for the associated type with the given id.
fn associated_ty_data(&self, ty: AssocTypeId<I>) -> Arc<AssociatedTyDatum<I>>;
/// Returns the datum for the definition with the given id.
fn trait_datum(&self, trait_id: TraitId<I>) -> Arc<TraitDatum<I>>;
/// Returns the datum for the ADT with the given id.
fn adt_datum(&self, adt_id: AdtId<I>) -> Arc<AdtDatum<I>>;
/// Returns the coroutine datum for the coroutine with the given id.
fn coroutine_datum(&self, coroutine_id: CoroutineId<I>) -> Arc<CoroutineDatum<I>>;
/// Returns the coroutine witness datum for the coroutine with the given id.
fn coroutine_witness_datum(
&self,
coroutine_id: CoroutineId<I>,
) -> Arc<CoroutineWitnessDatum<I>>;
/// Returns the representation for the ADT definition with the given id.
fn adt_repr(&self, id: AdtId<I>) -> Arc<AdtRepr<I>>;
/// Returns the siza and alignment of the ADT definition with the given id.
fn adt_size_align(&self, id: AdtId<I>) -> Arc<AdtSizeAlign>;
/// Returns the datum for the fn definition with the given id.
fn fn_def_datum(&self, fn_def_id: FnDefId<I>) -> Arc<FnDefDatum<I>>;
/// Returns the datum for the impl with the given id.
fn impl_datum(&self, impl_id: ImplId<I>) -> Arc<ImplDatum<I>>;
/// Returns the `AssociatedTyValue` with the given id.
fn associated_ty_value(&self, id: AssociatedTyValueId<I>) -> Arc<AssociatedTyValue<I>>;
/// Returns the `OpaqueTyDatum` with the given id.
fn opaque_ty_data(&self, id: OpaqueTyId<I>) -> Arc<OpaqueTyDatum<I>>;
/// Returns the "hidden type" corresponding with the opaque type.
fn hidden_opaque_type(&self, id: OpaqueTyId<I>) -> Ty<I>;
/// Returns a list of potentially relevant impls for a given
/// trait-id; we also supply the type parameters that we are
/// trying to match (if known: these parameters may contain
/// inference variables, for example). The implementor is
/// permitted to return any superset of the applicable impls;
/// chalk will narrow down the list to only those that truly
/// apply. The parameters are provided as a "hint" to help the
/// implementor do less work, but can be completely ignored if
/// desired.
///
/// The `binders` are for the `parameters`; if the recursive solver is used,
/// the parameters can contain bound variables referring to these binders.
fn impls_for_trait(
&self,
trait_id: TraitId<I>,
parameters: &[GenericArg<I>],
binders: &CanonicalVarKinds<I>,
) -> Vec<ImplId<I>>;
/// Returns the impls that require coherence checking. This is not the
/// full set of impls that exist:
///
/// - It can exclude impls not defined in the current crate.
/// - It can exclude "built-in" impls, like those for closures; only the
/// impls actually written by users need to be checked.
fn local_impls_to_coherence_check(&self, trait_id: TraitId<I>) -> Vec<ImplId<I>>;
/// Returns true if there is an explicit impl of the auto trait
/// `auto_trait_id` for the type `ty`. This is part of
/// the auto trait handling -- if there is no explicit impl given
/// by the user for `ty`, then we provide default impls
/// (otherwise, we rely on the impls the user gave).
fn impl_provided_for(&self, auto_trait_id: TraitId<I>, ty: &TyKind<I>) -> bool;
/// Returns id of a trait lang item, if found
fn well_known_trait_id(&self, well_known_trait: WellKnownTrait) -> Option<TraitId<I>>;
/// Calculates program clauses from an env. This is intended to call the
/// `program_clauses_for_env` function and then possibly cache the clauses.
fn program_clauses_for_env(&self, environment: &Environment<I>) -> ProgramClauses<I>;
fn interner(&self) -> I;
/// Check if a trait is object safe
fn is_object_safe(&self, trait_id: TraitId<I>) -> bool;
/// Gets the `ClosureKind` for a given closure and substitution.
fn closure_kind(&self, closure_id: ClosureId<I>, substs: &Substitution<I>) -> ClosureKind;
/// Gets the inputs and output for a given closure id and substitution. We
/// pass both the `ClosureId` and it's `Substituion` to give implementors
/// the freedom to store associated data in the substitution (like rustc) or
/// separately (like chalk-integration).
fn closure_inputs_and_output(
&self,
closure_id: ClosureId<I>,
substs: &Substitution<I>,
) -> Binders<FnDefInputsAndOutputDatum<I>>;
/// Gets the upvars as a `Ty` for a given closure id and substitution. There
/// are no restrictions on the type of upvars.
fn closure_upvars(&self, closure_id: ClosureId<I>, substs: &Substitution<I>) -> Binders<Ty<I>>;
/// Gets the substitution for the closure when used as a function.
/// For example, for the following (not-quite-)rust code:
/// ```ignore
/// let foo = |a: &mut u32| { a += 1; };
/// let c: &'a u32 = &0;
/// foo(c);
/// ```
///
/// This would return a `Substitution` of `[&'a]`. This could either be
/// substituted into the inputs and output, or into the upvars.
fn closure_fn_substitution(
&self,
closure_id: ClosureId<I>,
substs: &Substitution<I>,
) -> Substitution<I>;
fn unification_database(&self) -> &dyn UnificationDatabase<I>;
/// Retrieves a trait's original name. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn trait_name(&self, trait_id: TraitId<I>) -> String {
sanitize_debug_name(|f| I::debug_trait_id(trait_id, f))
}
/// Retrieves a struct's original name. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn adt_name(&self, adt_id: AdtId<I>) -> String {
sanitize_debug_name(|f| I::debug_adt_id(adt_id, f))
}
/// Retrieves the name of an associated type. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn assoc_type_name(&self, assoc_ty_id: AssocTypeId<I>) -> String {
sanitize_debug_name(|f| I::debug_assoc_type_id(assoc_ty_id, f))
}
/// Retrieves the name of an opaque type. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn opaque_type_name(&self, opaque_ty_id: OpaqueTyId<I>) -> String {
sanitize_debug_name(|f| I::debug_opaque_ty_id(opaque_ty_id, f))
}
/// Retrieves the name of a function definition. No uniqueness guarantees, but must
/// a valid Rust identifier.
fn fn_def_name(&self, fn_def_id: FnDefId<I>) -> String {
sanitize_debug_name(|f| I::debug_fn_def_id(fn_def_id, f))
}
// Retrieves the discriminant type for a type (mirror of rustc `Ty::discriminant_ty`)
fn discriminant_type(&self, ty: Ty<I>) -> Ty<I>;
}
pub use clauses::program_clauses_for_env;
pub use solve::Guidance;
pub use solve::Solution;
pub use solve::Solver;
pub use solve::SubstitutionResult;
#[macro_use]
mod debug_macros {
#[macro_export]
macro_rules! debug_span {
($($t: tt)*) => {
let __span = tracing::debug_span!($($t)*);
let __span = __span.enter();
};
}
}