1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
use crate::rust_ir::*;
use crate::RustIrDatabase;
use chalk_ir::interner::Interner;
use chalk_ir::*;
use std::sync::Arc;
use tracing::{debug, instrument};
/// Methods for splitting up the projections for associated types from
/// the surrounding context.
pub trait Split<I: Interner>: RustIrDatabase<I> {
/// Given a projection of an associated type, split the type
/// parameters into those that come from the *trait* and those
/// that come from the *associated type itself*. So e.g. if you
/// have `(Iterator::Item)<F>`, this would return `([F], [])`,
/// since `Iterator::Item` is not generic and hence doesn't have
/// any type parameters itself.
fn split_projection<'p>(
&self,
projection: &'p ProjectionTy<I>,
) -> (
Arc<AssociatedTyDatum<I>>,
&'p [GenericArg<I>],
&'p [GenericArg<I>],
) {
let interner = self.interner();
let ProjectionTy {
associated_ty_id,
ref substitution,
} = *projection;
let parameters = substitution.as_slice(interner);
let associated_ty_data = &self.associated_ty_data(associated_ty_id);
let (trait_params, other_params) =
self.split_associated_ty_parameters(parameters, &**associated_ty_data);
(associated_ty_data.clone(), trait_params, other_params)
}
/// Given a projection `<P0 as Trait<P1..Pn>>::Item<Pn..Pm>`,
/// returns the trait parameters `[P0..Pn]` (see
/// `split_projection`).
fn trait_parameters_from_projection<'p>(
&self,
projection: &'p ProjectionTy<I>,
) -> &'p [GenericArg<I>] {
let (_, trait_params, _) = self.split_projection(projection);
trait_params
}
/// Given a projection `<P0 as Trait<P1..Pn>>::Item<Pn..Pm>`,
/// returns the trait parameters `[P0..Pn]` (see
/// `split_projection`).
fn trait_ref_from_projection(&self, projection: &ProjectionTy<I>) -> TraitRef<I> {
let interner = self.interner();
let (associated_ty_data, trait_params, _) = self.split_projection(projection);
TraitRef {
trait_id: associated_ty_data.trait_id,
substitution: Substitution::from_iter(interner, trait_params),
}
}
/// Given the full set of parameters (or binders) for an
/// associated type *value* (which appears in an impl), splits
/// them into the substitutions for the *impl* and those for the
/// *associated type*.
///
/// # Example
///
/// ```ignore (example)
/// impl<T> Iterable for Vec<T> {
/// type Iter<'a>;
/// }
/// ```
///
/// in this example, the full set of parameters would be `['x,
/// Y]`, where `'x` is the value for `'a` and `Y` is the value for
/// `T`.
///
/// # Returns
///
/// Returns the pair of:
///
/// * the parameters for the impl (`[Y]`, in our example)
/// * the parameters for the associated type value (`['a]`, in our example)
fn split_associated_ty_value_parameters<'p, P>(
&self,
parameters: &'p [P],
associated_ty_value: &AssociatedTyValue<I>,
) -> (&'p [P], &'p [P]) {
let interner = self.interner();
let impl_datum = self.impl_datum(associated_ty_value.impl_id);
let impl_params_len = impl_datum.binders.len(interner);
assert!(parameters.len() >= impl_params_len);
// the impl parameters are a suffix
//
// [ P0..Pn, Pn...Pm ]
// ^^^^^^^ impl parameters
let split_point = parameters.len() - impl_params_len;
let (other_params, impl_params) = parameters.split_at(split_point);
(impl_params, other_params)
}
/// Given the full set of parameters for an associated type *value*
/// (which appears in an impl), returns the trait reference
/// and projection that are being satisfied by that value.
///
/// # Example
///
/// ```ignore (example)
/// impl<T> Iterable for Vec<T> {
/// type Iter<'a>;
/// }
/// ```
///
/// Here we expect the full set of parameters for `Iter`, which
/// would be `['x, Y]`, where `'x` is the value for `'a` and `Y`
/// is the value for `T`.
///
/// Returns the pair of:
///
/// * the parameters that apply to the impl (`Y`, in our example)
/// * the projection `<Vec<Y> as Iterable>::Iter<'x>`
#[instrument(level = "debug", skip(self, associated_ty_value))]
fn impl_parameters_and_projection_from_associated_ty_value<'p>(
&self,
parameters: &'p [GenericArg<I>],
associated_ty_value: &AssociatedTyValue<I>,
) -> (&'p [GenericArg<I>], ProjectionTy<I>) {
let interner = self.interner();
let impl_datum = self.impl_datum(associated_ty_value.impl_id);
// Get the trait ref from the impl -- so in our example above
// this would be `Box<!T>: Foo`.
let (impl_parameters, atv_parameters) =
self.split_associated_ty_value_parameters(parameters, associated_ty_value);
let trait_ref = {
let opaque_ty_ref = impl_datum.binders.map_ref(|b| &b.trait_ref).cloned();
debug!(?opaque_ty_ref);
opaque_ty_ref.substitute(interner, impl_parameters)
};
// Create the parameters for the projection -- in our example
// above, this would be `['!a, Box<!T>]`, corresponding to
// `<Box<!T> as Foo>::Item<'!a>`
let projection_substitution = Substitution::from_iter(
interner,
atv_parameters
.iter()
.chain(trait_ref.substitution.iter(interner))
.cloned(),
);
let projection = ProjectionTy {
associated_ty_id: associated_ty_value.associated_ty_id,
substitution: projection_substitution,
};
debug!(?impl_parameters, ?trait_ref, ?projection);
(impl_parameters, projection)
}
/// Given the full set of parameters (or binders) for an
/// associated type datum (the one appearing in a trait), splits
/// them into the parameters for the *trait* and those for the
/// *associated type*.
///
/// # Example
///
/// ```ignore (example)
/// trait Foo<T> {
/// type Assoc<'a>;
/// }
/// ```
///
/// in this example, the full set of parameters would be `['x,
/// Y]`, where `'x` is the value for `'a` and `Y` is the value for
/// `T`.
///
/// # Returns
///
/// Returns the tuple of:
///
/// * the parameters for the impl (`[Y]`, in our example)
/// * the parameters for the associated type value (`['a]`, in our example)
fn split_associated_ty_parameters<'p, P>(
&self,
parameters: &'p [P],
associated_ty_datum: &AssociatedTyDatum<I>,
) -> (&'p [P], &'p [P]) {
let trait_datum = &self.trait_datum(associated_ty_datum.trait_id);
let trait_num_params = trait_datum.binders.len(self.interner());
let split_point = parameters.len() - trait_num_params;
let (other_params, trait_params) = parameters.split_at(split_point);
(trait_params, other_params)
}
}
impl<DB: RustIrDatabase<I> + ?Sized, I: Interner> Split<I> for DB {}