Struct hashbrown::HashSet[][src]

pub struct HashSet<T, S = DefaultHashBuilder, A: Allocator + Clone = Global> { /* fields omitted */ }

A hash set implemented as a HashMap where the value is ().

As with the HashMap type, a HashSet requires that the elements implement the Eq and Hash traits. This can frequently be achieved by using #[derive(PartialEq, Eq, Hash)]. If you implement these yourself, it is important that the following property holds:

k1 == k2 -> hash(k1) == hash(k2)

In other words, if two keys are equal, their hashes must be equal.

It is a logic error for an item to be modified in such a way that the item’s hash, as determined by the Hash trait, or its equality, as determined by the Eq trait, changes while it is in the set. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

It is also a logic error for the Hash implementation of a key to panic. This is generally only possible if the trait is implemented manually. If a panic does occur then the contents of the HashSet may become corrupted and some items may be dropped from the table.

Examples

use hashbrown::HashSet;
// Type inference lets us omit an explicit type signature (which
// would be `HashSet<String>` in this example).
let mut books = HashSet::new();

// Add some books.
books.insert("A Dance With Dragons".to_string());
books.insert("To Kill a Mockingbird".to_string());
books.insert("The Odyssey".to_string());
books.insert("The Great Gatsby".to_string());

// Check for a specific one.
if !books.contains("The Winds of Winter") {
    println!("We have {} books, but The Winds of Winter ain't one.",
             books.len());
}

// Remove a book.
books.remove("The Odyssey");

// Iterate over everything.
for book in &books {
    println!("{}", book);
}

The easiest way to use HashSet with a custom type is to derive Eq and Hash. We must also derive PartialEq. This will in the future be implied by Eq.

use hashbrown::HashSet;
#[derive(Hash, Eq, PartialEq, Debug)]
struct Viking {
    name: String,
    power: usize,
}

let mut vikings = HashSet::new();

vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Einar".to_string(), power: 9 });
vikings.insert(Viking { name: "Olaf".to_string(), power: 4 });
vikings.insert(Viking { name: "Harald".to_string(), power: 8 });

// Use derived implementation to print the vikings.
for x in &vikings {
    println!("{:?}", x);
}

A HashSet with fixed list of elements can be initialized from an array:

use hashbrown::HashSet;

let viking_names: HashSet<&'static str> =
    [ "Einar", "Olaf", "Harald" ].iter().cloned().collect();
// use the values stored in the set

Implementations

impl<T, S, A> HashSet<T, S, A> where
    T: Eq + Hash + Sync,
    S: BuildHasher + Sync,
    A: Allocator + Clone + Sync
[src]

pub fn par_union<'a>(&'a self, other: &'a Self) -> ParUnion<'a, T, S, A>[src]

Visits (potentially in parallel) the values representing the union, i.e. all the values in self or other, without duplicates.

pub fn par_difference<'a>(
    &'a self,
    other: &'a Self
) -> ParDifference<'a, T, S, A>
[src]

Visits (potentially in parallel) the values representing the difference, i.e. the values that are in self but not in other.

pub fn par_symmetric_difference<'a>(
    &'a self,
    other: &'a Self
) -> ParSymmetricDifference<'a, T, S, A>
[src]

Visits (potentially in parallel) the values representing the symmetric difference, i.e. the values that are in self or in other but not in both.

pub fn par_intersection<'a>(
    &'a self,
    other: &'a Self
) -> ParIntersection<'a, T, S, A>
[src]

Visits (potentially in parallel) the values representing the intersection, i.e. the values that are both in self and other.

pub fn par_is_disjoint(&self, other: &Self) -> bool[src]

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

This method runs in a potentially parallel fashion.

pub fn par_is_subset(&self, other: &Self) -> bool[src]

Returns true if the set is a subset of another, i.e. other contains at least all the values in self.

This method runs in a potentially parallel fashion.

pub fn par_is_superset(&self, other: &Self) -> bool[src]

Returns true if the set is a superset of another, i.e. self contains at least all the values in other.

This method runs in a potentially parallel fashion.

pub fn par_eq(&self, other: &Self) -> bool[src]

Returns true if the set is equal to another, i.e. both sets contain the same values.

This method runs in a potentially parallel fashion.

impl<T, S, A> HashSet<T, S, A> where
    T: Eq + Hash + Send,
    A: Allocator + Clone + Send
[src]

pub fn par_drain(&mut self) -> ParDrain<'_, T, A>[src]

Consumes (potentially in parallel) all values in an arbitrary order, while preserving the set’s allocated memory for reuse.

impl<T> HashSet<T, DefaultHashBuilder>[src]

pub fn new() -> Self[src]

Creates an empty HashSet.

The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Examples

use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::new();

pub fn with_capacity(capacity: usize) -> Self[src]

Creates an empty HashSet with the specified capacity.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Examples

use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(10);
assert!(set.capacity() >= 10);

impl<T: Hash + Eq, A: Allocator + Clone> HashSet<T, DefaultHashBuilder, A>[src]

pub fn new_in(alloc: A) -> Self[src]

Creates an empty HashSet.

The hash set is initially created with a capacity of 0, so it will not allocate until it is first inserted into.

Examples

use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::new();

pub fn with_capacity_in(capacity: usize, alloc: A) -> Self[src]

Creates an empty HashSet with the specified capacity.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Examples

use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(10);
assert!(set.capacity() >= 10);

impl<T, S, A: Allocator + Clone> HashSet<T, S, A>[src]

pub fn capacity(&self) -> usize[src]

Returns the number of elements the set can hold without reallocating.

Examples

use hashbrown::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(100);
assert!(set.capacity() >= 100);

pub fn iter(&self) -> Iter<'_, T>

Notable traits for Iter<'a, K>

impl<'a, K> Iterator for Iter<'a, K> type Item = &'a K;
[src]

An iterator visiting all elements in arbitrary order. The iterator element type is &'a T.

Examples

use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert("a");
set.insert("b");

// Will print in an arbitrary order.
for x in set.iter() {
    println!("{}", x);
}

pub fn len(&self) -> usize[src]

Returns the number of elements in the set.

Examples

use hashbrown::HashSet;

let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);

pub fn is_empty(&self) -> bool[src]

Returns true if the set contains no elements.

Examples

use hashbrown::HashSet;

let mut v = HashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());

pub fn drain(&mut self) -> Drain<'_, T, A>

Notable traits for Drain<'_, K, A>

impl<K, A: Allocator + Clone> Iterator for Drain<'_, K, A> type Item = K;
[src]

Clears the set, returning all elements in an iterator.

Examples

use hashbrown::HashSet;

let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert!(!set.is_empty());

// print 1, 2, 3 in an arbitrary order
for i in set.drain() {
    println!("{}", i);
}

assert!(set.is_empty());

pub fn retain<F>(&mut self, f: F) where
    F: FnMut(&T) -> bool
[src]

Retains only the elements specified by the predicate.

In other words, remove all elements e such that f(&e) returns false.

Examples

use hashbrown::HashSet;

let xs = [1,2,3,4,5,6];
let mut set: HashSet<i32> = xs.iter().cloned().collect();
set.retain(|&k| k % 2 == 0);
assert_eq!(set.len(), 3);

pub fn drain_filter<F>(&mut self, f: F) -> DrainFilter<'_, T, F, A>

Notable traits for DrainFilter<'_, K, F, A>

impl<K, F, A: Allocator + Clone> Iterator for DrainFilter<'_, K, F, A> where
    F: FnMut(&K) -> bool
type Item = K;
where
    F: FnMut(&T) -> bool
[src]

Drains elements which are true under the given predicate, and returns an iterator over the removed items.

In other words, move all elements e such that f(&e) returns true out into another iterator.

When the returned DrainedFilter is dropped, any remaining elements that satisfy the predicate are dropped from the set.

Examples

use hashbrown::HashSet;

let mut set: HashSet<i32> = (0..8).collect();
let drained: HashSet<i32> = set.drain_filter(|v| v % 2 == 0).collect();

let mut evens = drained.into_iter().collect::<Vec<_>>();
let mut odds = set.into_iter().collect::<Vec<_>>();
evens.sort();
odds.sort();

assert_eq!(evens, vec![0, 2, 4, 6]);
assert_eq!(odds, vec![1, 3, 5, 7]);

pub fn clear(&mut self)[src]

Clears the set, removing all values.

Examples

use hashbrown::HashSet;

let mut v = HashSet::new();
v.insert(1);
v.clear();
assert!(v.is_empty());

impl<T, S> HashSet<T, S, Global>[src]

pub const fn with_hasher(hasher: S) -> Self[src]

Creates a new empty hash set which will use the given hasher to hash keys.

The hash set is also created with the default initial capacity.

Warning: hasher is normally randomly generated, and is designed to allow HashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples

use hashbrown::HashSet;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut set = HashSet::with_hasher(s);
set.insert(2);

pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> Self[src]

Creates an empty HashSet with the specified capacity, using hasher to hash the keys.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Warning: hasher is normally randomly generated, and is designed to allow HashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

The hash_builder passed should implement the BuildHasher trait for the HashMap to be useful, see its documentation for details.

Examples

use hashbrown::HashSet;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut set = HashSet::with_capacity_and_hasher(10, s);
set.insert(1);

impl<T, S, A> HashSet<T, S, A> where
    A: Allocator + Clone
[src]

pub fn allocator(&self) -> &A[src]

Returns a reference to the underlying allocator.

pub fn with_hasher_in(hasher: S, alloc: A) -> Self[src]

Creates a new empty hash set which will use the given hasher to hash keys.

The hash set is also created with the default initial capacity.

Warning: hasher is normally randomly generated, and is designed to allow HashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

Examples

use hashbrown::HashSet;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut set = HashSet::with_hasher(s);
set.insert(2);

pub fn with_capacity_and_hasher_in(capacity: usize, hasher: S, alloc: A) -> Self[src]

Creates an empty HashSet with the specified capacity, using hasher to hash the keys.

The hash set will be able to hold at least capacity elements without reallocating. If capacity is 0, the hash set will not allocate.

Warning: hasher is normally randomly generated, and is designed to allow HashSets to be resistant to attacks that cause many collisions and very poor performance. Setting it manually using this function can expose a DoS attack vector.

Examples

use hashbrown::HashSet;
use hashbrown::hash_map::DefaultHashBuilder;

let s = DefaultHashBuilder::default();
let mut set = HashSet::with_capacity_and_hasher(10, s);
set.insert(1);

pub fn hasher(&self) -> &S[src]

Returns a reference to the set’s BuildHasher.

Examples

use hashbrown::HashSet;
use hashbrown::hash_map::DefaultHashBuilder;

let hasher = DefaultHashBuilder::default();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &DefaultHashBuilder = set.hasher();

impl<T, S, A> HashSet<T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
[src]

pub fn reserve(&mut self, additional: usize)[src]

Reserves capacity for at least additional more elements to be inserted in the HashSet. The collection may reserve more space to avoid frequent reallocations.

Panics

Panics if the new allocation size overflows usize.

Examples

use hashbrown::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.reserve(10);
assert!(set.capacity() >= 10);

pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError>[src]

Tries to reserve capacity for at least additional more elements to be inserted in the given HashSet<K,V>. The collection may reserve more space to avoid frequent reallocations.

Errors

If the capacity overflows, or the allocator reports a failure, then an error is returned.

Examples

use hashbrown::HashSet;
let mut set: HashSet<i32> = HashSet::new();
set.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?");

pub fn shrink_to_fit(&mut self)[src]

Shrinks the capacity of the set as much as possible. It will drop down as much as possible while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Examples

use hashbrown::HashSet;

let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to_fit();
assert!(set.capacity() >= 2);

pub fn shrink_to(&mut self, min_capacity: usize)[src]

Shrinks the capacity of the set with a lower limit. It will drop down no lower than the supplied limit while maintaining the internal rules and possibly leaving some space in accordance with the resize policy.

Panics if the current capacity is smaller than the supplied minimum capacity.

Examples

use hashbrown::HashSet;

let mut set = HashSet::with_capacity(100);
set.insert(1);
set.insert(2);
assert!(set.capacity() >= 100);
set.shrink_to(10);
assert!(set.capacity() >= 10);
set.shrink_to(0);
assert!(set.capacity() >= 2);

pub fn difference<'a>(&'a self, other: &'a Self) -> Difference<'a, T, S, A>

Notable traits for Difference<'a, T, S, A>

impl<'a, T, S, A> Iterator for Difference<'a, T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
type Item = &'a T;
[src]

Visits the values representing the difference, i.e., the values that are in self but not in other.

Examples

use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Can be seen as `a - b`.
for x in a.difference(&b) {
    println!("{}", x); // Print 1
}

let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());

// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());

pub fn symmetric_difference<'a>(
    &'a self,
    other: &'a Self
) -> SymmetricDifference<'a, T, S, A>

Notable traits for SymmetricDifference<'a, T, S, A>

impl<'a, T, S, A> Iterator for SymmetricDifference<'a, T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
type Item = &'a T;
[src]

Visits the values representing the symmetric difference, i.e., the values that are in self or in other but not in both.

Examples

use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
    println!("{}", x);
}

let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();

assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());

pub fn intersection<'a>(&'a self, other: &'a Self) -> Intersection<'a, T, S, A>

Notable traits for Intersection<'a, T, S, A>

impl<'a, T, S, A> Iterator for Intersection<'a, T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
type Item = &'a T;
[src]

Visits the values representing the intersection, i.e., the values that are both in self and other.

Examples

use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
    println!("{}", x);
}

let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());

pub fn union<'a>(&'a self, other: &'a Self) -> Union<'a, T, S, A>

Notable traits for Union<'a, T, S, A>

impl<'a, T, S, A> Iterator for Union<'a, T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
type Item = &'a T;
[src]

Visits the values representing the union, i.e., all the values in self or other, without duplicates.

Examples

use hashbrown::HashSet;
let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let b: HashSet<_> = [4, 2, 3, 4].iter().cloned().collect();

// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
    println!("{}", x);
}

let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());

pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool where
    T: Borrow<Q>,
    Q: Hash + Eq
[src]

Returns true if the set contains a value.

The value may be any borrowed form of the set’s value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use hashbrown::HashSet;

let set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);

pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> where
    T: Borrow<Q>,
    Q: Hash + Eq
[src]

Returns a reference to the value in the set, if any, that is equal to the given value.

The value may be any borrowed form of the set’s value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use hashbrown::HashSet;

let set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);

pub fn get_or_insert(&mut self, value: T) -> &T[src]

Inserts the given value into the set if it is not present, then returns a reference to the value in the set.

Examples

use hashbrown::HashSet;

let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.len(), 3);
assert_eq!(set.get_or_insert(2), &2);
assert_eq!(set.get_or_insert(100), &100);
assert_eq!(set.len(), 4); // 100 was inserted

pub fn get_or_insert_owned<Q: ?Sized>(&mut self, value: &Q) -> &T where
    T: Borrow<Q>,
    Q: Hash + Eq + ToOwned<Owned = T>, 
[src]

Inserts an owned copy of the given value into the set if it is not present, then returns a reference to the value in the set.

Examples

use hashbrown::HashSet;

let mut set: HashSet<String> = ["cat", "dog", "horse"]
    .iter().map(|&pet| pet.to_owned()).collect();

assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
    let value = set.get_or_insert_owned(pet);
    assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted

pub fn get_or_insert_with<Q: ?Sized, F>(&mut self, value: &Q, f: F) -> &T where
    T: Borrow<Q>,
    Q: Hash + Eq,
    F: FnOnce(&Q) -> T, 
[src]

Inserts a value computed from f into the set if the given value is not present, then returns a reference to the value in the set.

Examples

use hashbrown::HashSet;

let mut set: HashSet<String> = ["cat", "dog", "horse"]
    .iter().map(|&pet| pet.to_owned()).collect();

assert_eq!(set.len(), 3);
for &pet in &["cat", "dog", "fish"] {
    let value = set.get_or_insert_with(pet, str::to_owned);
    assert_eq!(value, pet);
}
assert_eq!(set.len(), 4); // a new "fish" was inserted

pub fn is_disjoint(&self, other: &Self) -> bool[src]

Returns true if self has no elements in common with other. This is equivalent to checking for an empty intersection.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let mut b = HashSet::new();

assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);

pub fn is_subset(&self, other: &Self) -> bool[src]

Returns true if the set is a subset of another, i.e., other contains at least all the values in self.

Examples

use hashbrown::HashSet;

let sup: HashSet<_> = [1, 2, 3].iter().cloned().collect();
let mut set = HashSet::new();

assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);

pub fn is_superset(&self, other: &Self) -> bool[src]

Returns true if the set is a superset of another, i.e., self contains at least all the values in other.

Examples

use hashbrown::HashSet;

let sub: HashSet<_> = [1, 2].iter().cloned().collect();
let mut set = HashSet::new();

assert_eq!(set.is_superset(&sub), false);

set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);

set.insert(2);
assert_eq!(set.is_superset(&sub), true);

pub fn insert(&mut self, value: T) -> bool[src]

Adds a value to the set.

If the set did not have this value present, true is returned.

If the set did have this value present, false is returned.

Examples

use hashbrown::HashSet;

let mut set = HashSet::new();

assert_eq!(set.insert(2), true);
assert_eq!(set.insert(2), false);
assert_eq!(set.len(), 1);

pub fn replace(&mut self, value: T) -> Option<T>[src]

Adds a value to the set, replacing the existing value, if any, that is equal to the given one. Returns the replaced value.

Examples

use hashbrown::HashSet;

let mut set = HashSet::new();
set.insert(Vec::<i32>::new());

assert_eq!(set.get(&[][..]).unwrap().capacity(), 0);
set.replace(Vec::with_capacity(10));
assert_eq!(set.get(&[][..]).unwrap().capacity(), 10);

pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool where
    T: Borrow<Q>,
    Q: Hash + Eq
[src]

Removes a value from the set. Returns whether the value was present in the set.

The value may be any borrowed form of the set’s value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use hashbrown::HashSet;

let mut set = HashSet::new();

set.insert(2);
assert_eq!(set.remove(&2), true);
assert_eq!(set.remove(&2), false);

pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> where
    T: Borrow<Q>,
    Q: Hash + Eq
[src]

Removes and returns the value in the set, if any, that is equal to the given one.

The value may be any borrowed form of the set’s value type, but Hash and Eq on the borrowed form must match those for the value type.

Examples

use hashbrown::HashSet;

let mut set: HashSet<_> = [1, 2, 3].iter().cloned().collect();
assert_eq!(set.take(&2), Some(2));
assert_eq!(set.take(&2), None);

Trait Implementations

impl<T, S, A> BitAnd<&'_ HashSet<T, S, A>> for &HashSet<T, S, A> where
    T: Eq + Hash + Clone,
    S: BuildHasher + Default,
    A: Allocator + Clone
[src]

type Output = HashSet<T, S>

The resulting type after applying the & operator.

fn bitand(self, rhs: &HashSet<T, S, A>) -> HashSet<T, S>[src]

Returns the intersection of self and rhs as a new HashSet<T, S>.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![2, 3, 4].into_iter().collect();

let set = &a & &b;

let mut i = 0;
let expected = [2, 3];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<T, S, A> BitOr<&'_ HashSet<T, S, A>> for &HashSet<T, S, A> where
    T: Eq + Hash + Clone,
    S: BuildHasher + Default,
    A: Allocator + Clone
[src]

type Output = HashSet<T, S>

The resulting type after applying the | operator.

fn bitor(self, rhs: &HashSet<T, S, A>) -> HashSet<T, S>[src]

Returns the union of self and rhs as a new HashSet<T, S>.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a | &b;

let mut i = 0;
let expected = [1, 2, 3, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<T, S> BitXor<&'_ HashSet<T, S, Global>> for &HashSet<T, S> where
    T: Eq + Hash + Clone,
    S: BuildHasher + Default
[src]

type Output = HashSet<T, S>

The resulting type after applying the ^ operator.

fn bitxor(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the symmetric difference of self and rhs as a new HashSet<T, S>.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a ^ &b;

let mut i = 0;
let expected = [1, 2, 4, 5];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

impl<T: Clone, S: Clone, A: Allocator + Clone> Clone for HashSet<T, S, A>[src]

impl<T, S, A> Debug for HashSet<T, S, A> where
    T: Eq + Hash + Debug,
    S: BuildHasher,
    A: Allocator + Clone
[src]

impl<T, S, A> Default for HashSet<T, S, A> where
    S: Default,
    A: Default + Allocator + Clone
[src]

fn default() -> Self[src]

Creates an empty HashSet<T, S> with the Default value for the hasher.

impl<'de, T, S> Deserialize<'de> for HashSet<T, S> where
    T: Deserialize<'de> + Eq + Hash,
    S: BuildHasher + Default
[src]

impl<T, S, A> Eq for HashSet<T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
[src]

impl<'a, T, S, A> Extend<&'a T> for HashSet<T, S, A> where
    T: 'a + Eq + Hash + Copy,
    S: BuildHasher,
    A: Allocator + Clone
[src]

impl<T, S, A> Extend<T> for HashSet<T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
[src]

impl<T, S, A> From<HashMap<T, (), S, A>> for HashSet<T, S, A> where
    A: Allocator + Clone
[src]

impl<T, S, A> FromIterator<T> for HashSet<T, S, A> where
    T: Eq + Hash,
    S: BuildHasher + Default,
    A: Default + Allocator + Clone
[src]

impl<T, S> FromParallelIterator<T> for HashSet<T, S, Global> where
    T: Eq + Hash + Send,
    S: BuildHasher + Default
[src]

Collect values from a parallel iterator into a hashset.

impl<'a, T, S, A: Allocator + Clone> IntoIterator for &'a HashSet<T, S, A>[src]

type Item = &'a T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

impl<T, S, A: Allocator + Clone> IntoIterator for HashSet<T, S, A>[src]

type Item = T

The type of the elements being iterated over.

type IntoIter = IntoIter<T, A>

Which kind of iterator are we turning this into?

fn into_iter(self) -> IntoIter<T, A>

Notable traits for IntoIter<K, A>

impl<K, A: Allocator + Clone> Iterator for IntoIter<K, A> type Item = K;
[src]

Creates a consuming iterator, that is, one that moves each value out of the set in arbitrary order. The set cannot be used after calling this.

Examples

use hashbrown::HashSet;
let mut set = HashSet::new();
set.insert("a".to_string());
set.insert("b".to_string());

// Not possible to collect to a Vec<String> with a regular `.iter()`.
let v: Vec<String> = set.into_iter().collect();

// Will print in an arbitrary order.
for x in &v {
    println!("{}", x);
}

impl<T: Send, S, A: Allocator + Clone + Send> IntoParallelIterator for HashSet<T, S, A>[src]

type Item = T

The type of item that the parallel iterator will produce.

type Iter = IntoParIter<T, A>

The parallel iterator type that will be created.

impl<'a, T: Sync, S, A: Allocator + Clone> IntoParallelIterator for &'a HashSet<T, S, A>[src]

type Item = &'a T

The type of item that the parallel iterator will produce.

type Iter = ParIter<'a, T>

The parallel iterator type that will be created.

impl<'a, T, S> ParallelExtend<&'a T> for HashSet<T, S, Global> where
    T: 'a + Copy + Eq + Hash + Sync,
    S: BuildHasher
[src]

Extend a hash set with copied items from a parallel iterator.

impl<T, S> ParallelExtend<T> for HashSet<T, S, Global> where
    T: Eq + Hash + Send,
    S: BuildHasher
[src]

Extend a hash set with items from a parallel iterator.

impl<T, S, A> PartialEq<HashSet<T, S, A>> for HashSet<T, S, A> where
    T: Eq + Hash,
    S: BuildHasher,
    A: Allocator + Clone
[src]

impl<T, H> Serialize for HashSet<T, H> where
    T: Serialize + Eq + Hash,
    H: BuildHasher
[src]

impl<T, S> Sub<&'_ HashSet<T, S, Global>> for &HashSet<T, S> where
    T: Eq + Hash + Clone,
    S: BuildHasher + Default
[src]

type Output = HashSet<T, S>

The resulting type after applying the - operator.

fn sub(self, rhs: &HashSet<T, S>) -> HashSet<T, S>[src]

Returns the difference of self and rhs as a new HashSet<T, S>.

Examples

use hashbrown::HashSet;

let a: HashSet<_> = vec![1, 2, 3].into_iter().collect();
let b: HashSet<_> = vec![3, 4, 5].into_iter().collect();

let set = &a - &b;

let mut i = 0;
let expected = [1, 2];
for x in &set {
    assert!(expected.contains(x));
    i += 1;
}
assert_eq!(i, expected.len());

Auto Trait Implementations

impl<T, S, A> RefUnwindSafe for HashSet<T, S, A> where
    A: RefUnwindSafe,
    S: RefUnwindSafe,
    T: RefUnwindSafe

impl<T, S, A> Send for HashSet<T, S, A> where
    S: Send,
    T: Send

impl<T, S, A> Sync for HashSet<T, S, A> where
    S: Sync,
    T: Sync

impl<T, S, A> Unpin for HashSet<T, S, A> where
    A: Unpin,
    S: Unpin,
    T: Unpin

impl<T, S, A> UnwindSafe for HashSet<T, S, A> where
    A: UnwindSafe,
    S: UnwindSafe,
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> DeserializeOwned for T where
    T: for<'de> Deserialize<'de>, 
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<'data, I> IntoParallelRefIterator<'data> for I where
    I: 'data + ?Sized,
    &'data I: IntoParallelIterator
[src]

type Iter = <&'data I as IntoParallelIterator>::Iter

The type of the parallel iterator that will be returned.

type Item = <&'data I as IntoParallelIterator>::Item

The type of item that the parallel iterator will produce. This will typically be an &'data T reference type. Read more

impl<T> Pointable for T[src]

type Init = T

The type for initializers.

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.