1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
//! This module implements import-resolution/macro expansion algorithm.
//!
//! The result of this module is `DefMap`: a data structure which contains:
//!
//!   * a tree of modules for the crate
//!   * for each module, a set of items visible in the module (directly declared
//!     or imported)
//!
//! Note that `DefMap` contains fully macro expanded code.
//!
//! Computing `DefMap` can be partitioned into several logically
//! independent "phases". The phases are mutually recursive though, there's no
//! strict ordering.
//!
//! ## Collecting RawItems
//!
//! This happens in the `raw` module, which parses a single source file into a
//! set of top-level items. Nested imports are desugared to flat imports in this
//! phase. Macro calls are represented as a triple of (Path, Option<Name>,
//! TokenTree).
//!
//! ## Collecting Modules
//!
//! This happens in the `collector` module. In this phase, we recursively walk
//! tree of modules, collect raw items from submodules, populate module scopes
//! with defined items (so, we assign item ids in this phase) and record the set
//! of unresolved imports and macros.
//!
//! While we walk tree of modules, we also record macro_rules definitions and
//! expand calls to macro_rules defined macros.
//!
//! ## Resolving Imports
//!
//! We maintain a list of currently unresolved imports. On every iteration, we
//! try to resolve some imports from this list. If the import is resolved, we
//! record it, by adding an item to current module scope and, if necessary, by
//! recursively populating glob imports.
//!
//! ## Resolving Macros
//!
//! macro_rules from the same crate use a global mutable namespace. We expand
//! them immediately, when we collect modules.
//!
//! Macros from other crates (including proc-macros) can be used with
//! `foo::bar!` syntax. We handle them similarly to imports. There's a list of
//! unexpanded macros. On every iteration, we try to resolve each macro call
//! path and, upon success, we run macro expansion and "collect module" phase on
//! the result

pub mod attr_resolution;
mod collector;
pub mod diagnostics;
mod mod_resolution;
mod path_resolution;
pub mod proc_macro;

#[cfg(test)]
mod tests;

use std::ops::Deref;

use base_db::{CrateId, FileId};
use hir_expand::{
    name::Name, proc_macro::ProcMacroKind, ErasedAstId, HirFileId, InFile, MacroCallId, MacroDefId,
};
use itertools::Itertools;
use la_arena::Arena;
use rustc_hash::{FxHashMap, FxHashSet};
use span::{Edition, FileAstId, ROOT_ERASED_FILE_AST_ID};
use stdx::format_to;
use syntax::{ast, SmolStr};
use triomphe::Arc;
use tt::TextRange;

use crate::{
    db::DefDatabase,
    item_scope::{BuiltinShadowMode, ItemScope},
    item_tree::{ItemTreeId, Mod, TreeId},
    nameres::{diagnostics::DefDiagnostic, path_resolution::ResolveMode},
    path::ModPath,
    per_ns::PerNs,
    visibility::{Visibility, VisibilityExplicitness},
    AstId, BlockId, BlockLoc, CrateRootModuleId, EnumId, EnumVariantId, ExternCrateId, FunctionId,
    LocalModuleId, Lookup, MacroExpander, MacroId, ModuleId, ProcMacroId, UseId,
};

/// Contains the results of (early) name resolution.
///
/// A `DefMap` stores the module tree and the definitions that are in scope in every module after
/// item-level macros have been expanded.
///
/// Every crate has a primary `DefMap` whose root is the crate's main file (`main.rs`/`lib.rs`),
/// computed by the `crate_def_map` query. Additionally, every block expression introduces the
/// opportunity to write arbitrary item and module hierarchies, and thus gets its own `DefMap` that
/// is computed by the `block_def_map` query.
#[derive(Debug, PartialEq, Eq)]
pub struct DefMap {
    /// When this is a block def map, this will hold the block id of the block and module that
    /// contains this block.
    block: Option<BlockInfo>,
    /// The modules and their data declared in this crate.
    pub modules: Arena<ModuleData>,
    krate: CrateId,
    /// The prelude module for this crate. This either comes from an import
    /// marked with the `prelude_import` attribute, or (in the normal case) from
    /// a dependency (`std` or `core`).
    /// The prelude is empty for non-block DefMaps (unless `#[prelude_import]` was used,
    /// but that attribute is nightly and when used in a block, it affects resolution globally
    /// so we aren't handling this correctly anyways).
    prelude: Option<(ModuleId, Option<UseId>)>,
    /// `macro_use` prelude that contains macros from `#[macro_use]`'d external crates. Note that
    /// this contains all kinds of macro, not just `macro_rules!` macro.
    /// ExternCrateId being None implies it being imported from the general prelude import.
    macro_use_prelude: FxHashMap<Name, (MacroId, Option<ExternCrateId>)>,
    pub(crate) enum_definitions: FxHashMap<EnumId, Box<[EnumVariantId]>>,

    /// Tracks which custom derives are in scope for an item, to allow resolution of derive helper
    /// attributes.
    derive_helpers_in_scope: FxHashMap<AstId<ast::Item>, Vec<(Name, MacroId, MacroCallId)>>,

    /// The diagnostics that need to be emitted for this crate.
    diagnostics: Vec<DefDiagnostic>,

    /// The crate data that is shared between a crate's def map and all its block def maps.
    data: Arc<DefMapCrateData>,
}

/// Data that belongs to a crate which is shared between a crate's def map and all its block def maps.
#[derive(Clone, Debug, PartialEq, Eq)]
struct DefMapCrateData {
    /// The extern prelude which contains all root modules of external crates that are in scope.
    extern_prelude: FxHashMap<Name, (CrateRootModuleId, Option<ExternCrateId>)>,

    /// Side table for resolving derive helpers.
    exported_derives: FxHashMap<MacroDefId, Box<[Name]>>,
    fn_proc_macro_mapping: FxHashMap<FunctionId, ProcMacroId>,
    /// The error that occurred when failing to load the proc-macro dll.
    proc_macro_loading_error: Option<Box<str>>,

    /// Custom attributes registered with `#![register_attr]`.
    registered_attrs: Vec<SmolStr>,
    /// Custom tool modules registered with `#![register_tool]`.
    registered_tools: Vec<SmolStr>,
    /// Unstable features of Rust enabled with `#![feature(A, B)]`.
    unstable_features: FxHashSet<SmolStr>,
    /// #[rustc_coherence_is_core]
    rustc_coherence_is_core: bool,
    no_core: bool,
    no_std: bool,

    edition: Edition,
    recursion_limit: Option<u32>,
}

impl DefMapCrateData {
    fn new(edition: Edition) -> Self {
        Self {
            extern_prelude: FxHashMap::default(),
            exported_derives: FxHashMap::default(),
            fn_proc_macro_mapping: FxHashMap::default(),
            proc_macro_loading_error: None,
            registered_attrs: Vec::new(),
            registered_tools: Vec::new(),
            unstable_features: FxHashSet::default(),
            rustc_coherence_is_core: false,
            no_core: false,
            no_std: false,
            edition,
            recursion_limit: None,
        }
    }

    fn shrink_to_fit(&mut self) {
        let Self {
            extern_prelude,
            exported_derives,
            fn_proc_macro_mapping,
            registered_attrs,
            registered_tools,
            unstable_features,
            proc_macro_loading_error: _,
            rustc_coherence_is_core: _,
            no_core: _,
            no_std: _,
            edition: _,
            recursion_limit: _,
        } = self;
        extern_prelude.shrink_to_fit();
        exported_derives.shrink_to_fit();
        fn_proc_macro_mapping.shrink_to_fit();
        registered_attrs.shrink_to_fit();
        registered_tools.shrink_to_fit();
        unstable_features.shrink_to_fit();
    }
}

/// For `DefMap`s computed for a block expression, this stores its location in the parent map.
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
struct BlockInfo {
    /// The `BlockId` this `DefMap` was created from.
    block: BlockId,
    /// The containing module.
    parent: BlockRelativeModuleId,
}

#[derive(Debug, PartialEq, Eq, Clone, Copy)]
struct BlockRelativeModuleId {
    block: Option<BlockId>,
    local_id: LocalModuleId,
}

impl BlockRelativeModuleId {
    fn def_map(self, db: &dyn DefDatabase, krate: CrateId) -> Arc<DefMap> {
        self.into_module(krate).def_map(db)
    }

    fn into_module(self, krate: CrateId) -> ModuleId {
        ModuleId { krate, block: self.block, local_id: self.local_id }
    }

    fn is_block_module(self) -> bool {
        self.block.is_some() && self.local_id == DefMap::ROOT
    }
}

impl std::ops::Index<LocalModuleId> for DefMap {
    type Output = ModuleData;
    fn index(&self, id: LocalModuleId) -> &ModuleData {
        &self.modules[id]
    }
}

#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum ModuleOrigin {
    CrateRoot {
        definition: FileId,
    },
    /// Note that non-inline modules, by definition, live inside non-macro file.
    File {
        is_mod_rs: bool,
        declaration: FileAstId<ast::Module>,
        declaration_tree_id: ItemTreeId<Mod>,
        definition: FileId,
    },
    Inline {
        definition_tree_id: ItemTreeId<Mod>,
        definition: FileAstId<ast::Module>,
    },
    /// Pseudo-module introduced by a block scope (contains only inner items).
    BlockExpr {
        id: BlockId,
        block: AstId<ast::BlockExpr>,
    },
}

impl ModuleOrigin {
    pub fn declaration(&self) -> Option<AstId<ast::Module>> {
        match self {
            &ModuleOrigin::File { declaration, declaration_tree_id, .. } => {
                Some(AstId::new(declaration_tree_id.file_id(), declaration))
            }
            &ModuleOrigin::Inline { definition, definition_tree_id } => {
                Some(AstId::new(definition_tree_id.file_id(), definition))
            }
            ModuleOrigin::CrateRoot { .. } | ModuleOrigin::BlockExpr { .. } => None,
        }
    }

    pub fn file_id(&self) -> Option<FileId> {
        match self {
            ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
                Some(*definition)
            }
            _ => None,
        }
    }

    pub fn is_inline(&self) -> bool {
        match self {
            ModuleOrigin::Inline { .. } | ModuleOrigin::BlockExpr { .. } => true,
            ModuleOrigin::CrateRoot { .. } | ModuleOrigin::File { .. } => false,
        }
    }

    /// Returns a node which defines this module.
    /// That is, a file or a `mod foo {}` with items.
    fn definition_source(&self, db: &dyn DefDatabase) -> InFile<ModuleSource> {
        match self {
            &ModuleOrigin::File { definition, .. } | &ModuleOrigin::CrateRoot { definition } => {
                let sf = db.parse(definition).tree();
                InFile::new(definition.into(), ModuleSource::SourceFile(sf))
            }
            &ModuleOrigin::Inline { definition, definition_tree_id } => InFile::new(
                definition_tree_id.file_id(),
                ModuleSource::Module(
                    AstId::new(definition_tree_id.file_id(), definition).to_node(db.upcast()),
                ),
            ),
            ModuleOrigin::BlockExpr { block, .. } => {
                InFile::new(block.file_id, ModuleSource::BlockExpr(block.to_node(db.upcast())))
            }
        }
    }
}

#[derive(Debug, PartialEq, Eq)]
pub struct ModuleData {
    /// Where does this module come from?
    pub origin: ModuleOrigin,
    /// Declared visibility of this module.
    pub visibility: Visibility,
    /// Parent module in the same `DefMap`.
    ///
    /// [`None`] for block modules because they are always its `DefMap`'s root.
    pub parent: Option<LocalModuleId>,
    pub children: FxHashMap<Name, LocalModuleId>,
    pub scope: ItemScope,
}

impl DefMap {
    /// The module id of a crate or block root.
    pub const ROOT: LocalModuleId = LocalModuleId::from_raw(la_arena::RawIdx::from_u32(0));

    pub(crate) fn crate_def_map_query(db: &dyn DefDatabase, crate_id: CrateId) -> Arc<DefMap> {
        let crate_graph = db.crate_graph();
        let krate = &crate_graph[crate_id];
        let name = krate.display_name.as_deref().unwrap_or_default();
        let _p = tracing::span!(tracing::Level::INFO, "crate_def_map_query", ?name).entered();

        let module_data = ModuleData::new(
            ModuleOrigin::CrateRoot { definition: krate.root_file_id },
            Visibility::Public,
        );

        let def_map = DefMap::empty(
            crate_id,
            Arc::new(DefMapCrateData::new(krate.edition)),
            module_data,
            None,
        );
        let def_map =
            collector::collect_defs(db, def_map, TreeId::new(krate.root_file_id.into(), None));

        Arc::new(def_map)
    }

    pub(crate) fn block_def_map_query(db: &dyn DefDatabase, block_id: BlockId) -> Arc<DefMap> {
        let BlockLoc { ast_id, module } = block_id.lookup(db);

        let visibility = Visibility::Module(
            ModuleId { krate: module.krate, local_id: Self::ROOT, block: module.block },
            VisibilityExplicitness::Implicit,
        );
        let module_data =
            ModuleData::new(ModuleOrigin::BlockExpr { block: ast_id, id: block_id }, visibility);

        let parent_map = module.def_map(db);
        let def_map = DefMap::empty(
            module.krate,
            parent_map.data.clone(),
            module_data,
            Some(BlockInfo {
                block: block_id,
                parent: BlockRelativeModuleId { block: module.block, local_id: module.local_id },
            }),
        );

        let def_map =
            collector::collect_defs(db, def_map, TreeId::new(ast_id.file_id, Some(block_id)));
        Arc::new(def_map)
    }

    fn empty(
        krate: CrateId,
        crate_data: Arc<DefMapCrateData>,
        module_data: ModuleData,
        block: Option<BlockInfo>,
    ) -> DefMap {
        let mut modules: Arena<ModuleData> = Arena::default();
        let root = modules.alloc(module_data);
        assert_eq!(root, Self::ROOT);

        DefMap {
            block,
            modules,
            krate,
            prelude: None,
            macro_use_prelude: FxHashMap::default(),
            derive_helpers_in_scope: FxHashMap::default(),
            diagnostics: Vec::new(),
            enum_definitions: FxHashMap::default(),
            data: crate_data,
        }
    }
    fn shrink_to_fit(&mut self) {
        // Exhaustive match to require handling new fields.
        let Self {
            macro_use_prelude,
            diagnostics,
            modules,
            derive_helpers_in_scope,
            block: _,
            krate: _,
            prelude: _,
            data: _,
            enum_definitions,
        } = self;

        macro_use_prelude.shrink_to_fit();
        diagnostics.shrink_to_fit();
        modules.shrink_to_fit();
        derive_helpers_in_scope.shrink_to_fit();
        enum_definitions.shrink_to_fit();
        for (_, module) in modules.iter_mut() {
            module.children.shrink_to_fit();
            module.scope.shrink_to_fit();
        }
    }
}

impl DefMap {
    pub fn modules_for_file(&self, file_id: FileId) -> impl Iterator<Item = LocalModuleId> + '_ {
        self.modules
            .iter()
            .filter(move |(_id, data)| data.origin.file_id() == Some(file_id))
            .map(|(id, _data)| id)
    }

    pub fn modules(&self) -> impl Iterator<Item = (LocalModuleId, &ModuleData)> + '_ {
        self.modules.iter()
    }

    pub fn derive_helpers_in_scope(
        &self,
        id: AstId<ast::Adt>,
    ) -> Option<&[(Name, MacroId, MacroCallId)]> {
        self.derive_helpers_in_scope.get(&id.map(|it| it.upcast())).map(Deref::deref)
    }

    pub fn registered_tools(&self) -> &[SmolStr] {
        &self.data.registered_tools
    }

    pub fn registered_attrs(&self) -> &[SmolStr] {
        &self.data.registered_attrs
    }

    pub fn is_unstable_feature_enabled(&self, feature: &str) -> bool {
        self.data.unstable_features.contains(feature)
    }

    pub fn is_rustc_coherence_is_core(&self) -> bool {
        self.data.rustc_coherence_is_core
    }

    pub fn is_no_std(&self) -> bool {
        self.data.no_std || self.data.no_core
    }

    pub fn fn_as_proc_macro(&self, id: FunctionId) -> Option<ProcMacroId> {
        self.data.fn_proc_macro_mapping.get(&id).copied()
    }

    pub fn proc_macro_loading_error(&self) -> Option<&str> {
        self.data.proc_macro_loading_error.as_deref()
    }

    pub fn krate(&self) -> CrateId {
        self.krate
    }

    pub fn module_id(&self, local_id: LocalModuleId) -> ModuleId {
        let block = self.block.map(|b| b.block);
        ModuleId { krate: self.krate, local_id, block }
    }

    pub fn crate_root(&self) -> CrateRootModuleId {
        CrateRootModuleId { krate: self.krate }
    }

    /// This is the same as [`Self::crate_root`] for crate def maps, but for block def maps, it
    /// returns the root block module.
    pub fn root_module_id(&self) -> ModuleId {
        self.module_id(Self::ROOT)
    }

    /// If this `DefMap` is for a block expression, returns the module containing the block (which
    /// might again be a block, or a module inside a block).
    pub fn parent(&self) -> Option<ModuleId> {
        let BlockRelativeModuleId { block, local_id } = self.block?.parent;
        Some(ModuleId { krate: self.krate, block, local_id })
    }

    /// Returns the module containing `local_mod`, either the parent `mod`, or the module (or block) containing
    /// the block, if `self` corresponds to a block expression.
    pub fn containing_module(&self, local_mod: LocalModuleId) -> Option<ModuleId> {
        match self[local_mod].parent {
            Some(parent) => Some(self.module_id(parent)),
            None => {
                self.block.map(
                    |BlockInfo { parent: BlockRelativeModuleId { block, local_id }, .. }| {
                        ModuleId { krate: self.krate, block, local_id }
                    },
                )
            }
        }
    }

    /// Get a reference to the def map's diagnostics.
    pub fn diagnostics(&self) -> &[DefDiagnostic] {
        self.diagnostics.as_slice()
    }

    pub fn recursion_limit(&self) -> u32 {
        // 128 is the default in rustc
        self.data.recursion_limit.unwrap_or(128)
    }

    // FIXME: this can use some more human-readable format (ideally, an IR
    // even), as this should be a great debugging aid.
    pub fn dump(&self, db: &dyn DefDatabase) -> String {
        let mut buf = String::new();
        let mut arc;
        let mut current_map = self;
        while let Some(block) = current_map.block {
            go(&mut buf, db, current_map, "block scope", Self::ROOT);
            buf.push('\n');
            arc = block.parent.def_map(db, self.krate);
            current_map = &arc;
        }
        go(&mut buf, db, current_map, "crate", Self::ROOT);
        return buf;

        fn go(
            buf: &mut String,
            db: &dyn DefDatabase,
            map: &DefMap,
            path: &str,
            module: LocalModuleId,
        ) {
            format_to!(buf, "{}\n", path);

            map.modules[module].scope.dump(db.upcast(), buf);

            for (name, child) in
                map.modules[module].children.iter().sorted_by(|a, b| Ord::cmp(&a.0, &b.0))
            {
                let path = format!("{path}::{}", name.display(db.upcast()));
                buf.push('\n');
                go(buf, db, map, &path, *child);
            }
        }
    }

    pub fn dump_block_scopes(&self, db: &dyn DefDatabase) -> String {
        let mut buf = String::new();
        let mut arc;
        let mut current_map = self;
        while let Some(block) = current_map.block {
            format_to!(buf, "{:?} in {:?}\n", block.block, block.parent);
            arc = block.parent.def_map(db, self.krate);
            current_map = &arc;
        }

        format_to!(buf, "crate scope\n");
        buf
    }
}

impl DefMap {
    pub(crate) fn block_id(&self) -> Option<BlockId> {
        self.block.map(|block| block.block)
    }

    pub(crate) fn prelude(&self) -> Option<(ModuleId, Option<UseId>)> {
        self.prelude
    }

    pub(crate) fn extern_prelude(
        &self,
    ) -> impl Iterator<Item = (&Name, (CrateRootModuleId, Option<ExternCrateId>))> + '_ {
        self.data.extern_prelude.iter().map(|(name, &def)| (name, def))
    }

    pub(crate) fn macro_use_prelude(
        &self,
    ) -> impl Iterator<Item = (&Name, (MacroId, Option<ExternCrateId>))> + '_ {
        self.macro_use_prelude.iter().map(|(name, &def)| (name, def))
    }

    pub(crate) fn resolve_path(
        &self,
        db: &dyn DefDatabase,
        original_module: LocalModuleId,
        path: &ModPath,
        shadow: BuiltinShadowMode,
        expected_macro_subns: Option<MacroSubNs>,
    ) -> (PerNs, Option<usize>) {
        let res = self.resolve_path_fp_with_macro(
            db,
            ResolveMode::Other,
            original_module,
            path,
            shadow,
            expected_macro_subns,
        );
        (res.resolved_def, res.segment_index)
    }

    pub(crate) fn resolve_path_locally(
        &self,
        db: &dyn DefDatabase,
        original_module: LocalModuleId,
        path: &ModPath,
        shadow: BuiltinShadowMode,
    ) -> (PerNs, Option<usize>) {
        let res = self.resolve_path_fp_with_macro_single(
            db,
            ResolveMode::Other,
            original_module,
            path,
            shadow,
            None, // Currently this function isn't used for macro resolution.
        );
        (res.resolved_def, res.segment_index)
    }

    /// Ascends the `DefMap` hierarchy and calls `f` with every `DefMap` and containing module.
    ///
    /// If `f` returns `Some(val)`, iteration is stopped and `Some(val)` is returned. If `f` returns
    /// `None`, iteration continues.
    pub(crate) fn with_ancestor_maps<T>(
        &self,
        db: &dyn DefDatabase,
        local_mod: LocalModuleId,
        f: &mut dyn FnMut(&DefMap, LocalModuleId) -> Option<T>,
    ) -> Option<T> {
        if let Some(it) = f(self, local_mod) {
            return Some(it);
        }
        let mut block = self.block;
        while let Some(block_info) = block {
            let parent = block_info.parent.def_map(db, self.krate);
            if let Some(it) = f(&parent, block_info.parent.local_id) {
                return Some(it);
            }
            block = parent.block;
        }

        None
    }
}

impl ModuleData {
    pub(crate) fn new(origin: ModuleOrigin, visibility: Visibility) -> Self {
        ModuleData {
            origin,
            visibility,
            parent: None,
            children: FxHashMap::default(),
            scope: ItemScope::default(),
        }
    }

    /// Returns a node which defines this module. That is, a file or a `mod foo {}` with items.
    pub fn definition_source(&self, db: &dyn DefDatabase) -> InFile<ModuleSource> {
        self.origin.definition_source(db)
    }

    /// Same as [`definition_source`] but only returns the file id to prevent parsing the ASt.
    pub fn definition_source_file_id(&self) -> HirFileId {
        match self.origin {
            ModuleOrigin::File { definition, .. } | ModuleOrigin::CrateRoot { definition } => {
                definition.into()
            }
            ModuleOrigin::Inline { definition_tree_id, .. } => definition_tree_id.file_id(),
            ModuleOrigin::BlockExpr { block, .. } => block.file_id,
        }
    }

    pub fn definition_source_range(&self, db: &dyn DefDatabase) -> InFile<TextRange> {
        match &self.origin {
            &ModuleOrigin::File { definition, .. } | &ModuleOrigin::CrateRoot { definition } => {
                InFile::new(
                    definition.into(),
                    ErasedAstId::new(definition.into(), ROOT_ERASED_FILE_AST_ID)
                        .to_range(db.upcast()),
                )
            }
            &ModuleOrigin::Inline { definition, definition_tree_id } => InFile::new(
                definition_tree_id.file_id(),
                AstId::new(definition_tree_id.file_id(), definition).to_range(db.upcast()),
            ),
            ModuleOrigin::BlockExpr { block, .. } => {
                InFile::new(block.file_id, block.to_range(db.upcast()))
            }
        }
    }

    /// Returns a node which declares this module, either a `mod foo;` or a `mod foo {}`.
    /// `None` for the crate root or block.
    pub fn declaration_source(&self, db: &dyn DefDatabase) -> Option<InFile<ast::Module>> {
        let decl = self.origin.declaration()?;
        let value = decl.to_node(db.upcast());
        Some(InFile { file_id: decl.file_id, value })
    }

    /// Returns the range which declares this module, either a `mod foo;` or a `mod foo {}`.
    /// `None` for the crate root or block.
    pub fn declaration_source_range(&self, db: &dyn DefDatabase) -> Option<InFile<TextRange>> {
        let decl = self.origin.declaration()?;
        Some(InFile { file_id: decl.file_id, value: decl.to_range(db.upcast()) })
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ModuleSource {
    SourceFile(ast::SourceFile),
    Module(ast::Module),
    BlockExpr(ast::BlockExpr),
}

/// See `sub_namespace_match()`.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum MacroSubNs {
    /// Function-like macros, suffixed with `!`.
    Bang,
    /// Macros inside attributes, i.e. attribute macros and derive macros.
    Attr,
}

impl MacroSubNs {
    fn from_id(db: &dyn DefDatabase, macro_id: MacroId) -> Self {
        let expander = match macro_id {
            MacroId::Macro2Id(it) => it.lookup(db).expander,
            MacroId::MacroRulesId(it) => it.lookup(db).expander,
            MacroId::ProcMacroId(it) => {
                return match it.lookup(db).kind {
                    ProcMacroKind::CustomDerive | ProcMacroKind::Attr => Self::Attr,
                    ProcMacroKind::Bang => Self::Bang,
                };
            }
        };

        // Eager macros aren't *guaranteed* to be bang macros, but they *are* all bang macros currently.
        match expander {
            MacroExpander::Declarative
            | MacroExpander::BuiltIn(_)
            | MacroExpander::BuiltInEager(_) => Self::Bang,
            MacroExpander::BuiltInAttr(_) | MacroExpander::BuiltInDerive(_) => Self::Attr,
        }
    }
}

/// Quoted from [rustc]:
/// Macro namespace is separated into two sub-namespaces, one for bang macros and
/// one for attribute-like macros (attributes, derives).
/// We ignore resolutions from one sub-namespace when searching names in scope for another.
///
/// [rustc]: https://github.com/rust-lang/rust/blob/1.69.0/compiler/rustc_resolve/src/macros.rs#L75
fn sub_namespace_match(candidate: Option<MacroSubNs>, expected: Option<MacroSubNs>) -> bool {
    match (candidate, expected) {
        (Some(candidate), Some(expected)) => candidate == expected,
        _ => true,
    }
}