use intern::sym;
use itertools::{Itertools, izip};
use parser::SyntaxKind;
use rustc_hash::FxHashSet;
use span::{Edition, MacroCallId, Span, SyntaxContext};
use stdx::never;
use syntax_bridge::DocCommentDesugarMode;
use tracing::debug;
use crate::{
ExpandError, ExpandResult,
builtin::quote::{dollar_crate, quote},
db::ExpandDatabase,
hygiene::span_with_def_site_ctxt,
name::{self, AsName, Name},
span_map::ExpansionSpanMap,
tt,
};
use syntax::{
ast::{
self, AstNode, FieldList, HasAttrs, HasGenericArgs, HasGenericParams, HasModuleItem,
HasName, HasTypeBounds, edit_in_place::GenericParamsOwnerEdit, make,
},
ted,
};
macro_rules! register_builtin {
( $($trait:ident => $expand:ident),* ) => {
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum BuiltinDeriveExpander {
$($trait),*
}
impl BuiltinDeriveExpander {
pub fn expander(&self) -> fn(&dyn ExpandDatabase, Span, &tt::TopSubtree) -> ExpandResult<tt::TopSubtree> {
match *self {
$( BuiltinDeriveExpander::$trait => $expand, )*
}
}
fn find_by_name(name: &name::Name) -> Option<Self> {
match name {
$( id if id == &sym::$trait => Some(BuiltinDeriveExpander::$trait), )*
_ => None,
}
}
}
};
}
impl BuiltinDeriveExpander {
pub fn expand(
&self,
db: &dyn ExpandDatabase,
id: MacroCallId,
tt: &tt::TopSubtree,
span: Span,
) -> ExpandResult<tt::TopSubtree> {
let span = span_with_def_site_ctxt(db, span, id, Edition::CURRENT);
self.expander()(db, span, tt)
}
}
register_builtin! {
Copy => copy_expand,
Clone => clone_expand,
Default => default_expand,
Debug => debug_expand,
Hash => hash_expand,
Ord => ord_expand,
PartialOrd => partial_ord_expand,
Eq => eq_expand,
PartialEq => partial_eq_expand,
CoercePointee => coerce_pointee_expand
}
pub fn find_builtin_derive(ident: &name::Name) -> Option<BuiltinDeriveExpander> {
BuiltinDeriveExpander::find_by_name(ident)
}
#[derive(Clone)]
enum VariantShape {
Struct(Vec<tt::Ident>),
Tuple(usize),
Unit,
}
fn tuple_field_iterator(span: Span, n: usize) -> impl Iterator<Item = tt::Ident> {
(0..n).map(move |it| tt::Ident::new(&format!("f{it}"), span))
}
impl VariantShape {
fn as_pattern(&self, path: tt::TopSubtree, span: Span) -> tt::TopSubtree {
self.as_pattern_map(path, span, |it| quote!(span => #it))
}
fn field_names(&self, span: Span) -> Vec<tt::Ident> {
match self {
VariantShape::Struct(s) => s.clone(),
VariantShape::Tuple(n) => tuple_field_iterator(span, *n).collect(),
VariantShape::Unit => vec![],
}
}
fn as_pattern_map(
&self,
path: tt::TopSubtree,
span: Span,
field_map: impl Fn(&tt::Ident) -> tt::TopSubtree,
) -> tt::TopSubtree {
match self {
VariantShape::Struct(fields) => {
let fields = fields.iter().map(|it| {
let mapped = field_map(it);
quote! {span => #it : #mapped , }
});
quote! {span =>
#path { # #fields }
}
}
&VariantShape::Tuple(n) => {
let fields = tuple_field_iterator(span, n).map(|it| {
let mapped = field_map(&it);
quote! {span =>
#mapped ,
}
});
quote! {span =>
#path ( # #fields )
}
}
VariantShape::Unit => path,
}
}
fn from(
call_site: Span,
tm: &ExpansionSpanMap,
value: Option<FieldList>,
) -> Result<Self, ExpandError> {
let r = match value {
None => VariantShape::Unit,
Some(FieldList::RecordFieldList(it)) => VariantShape::Struct(
it.fields()
.map(|it| it.name())
.map(|it| name_to_token(call_site, tm, it))
.collect::<Result<_, _>>()?,
),
Some(FieldList::TupleFieldList(it)) => VariantShape::Tuple(it.fields().count()),
};
Ok(r)
}
}
#[derive(Clone)]
enum AdtShape {
Struct(VariantShape),
Enum { variants: Vec<(tt::Ident, VariantShape)>, default_variant: Option<usize> },
Union,
}
impl AdtShape {
fn as_pattern(&self, span: Span, name: &tt::Ident) -> Vec<tt::TopSubtree> {
self.as_pattern_map(name, |it| quote!(span =>#it), span)
}
fn field_names(&self, span: Span) -> Vec<Vec<tt::Ident>> {
match self {
AdtShape::Struct(s) => {
vec![s.field_names(span)]
}
AdtShape::Enum { variants, .. } => {
variants.iter().map(|(_, fields)| fields.field_names(span)).collect()
}
AdtShape::Union => {
never!("using fields of union in derive is always wrong");
vec![]
}
}
}
fn as_pattern_map(
&self,
name: &tt::Ident,
field_map: impl Fn(&tt::Ident) -> tt::TopSubtree,
span: Span,
) -> Vec<tt::TopSubtree> {
match self {
AdtShape::Struct(s) => {
vec![s.as_pattern_map(quote! {span => #name }, span, field_map)]
}
AdtShape::Enum { variants, .. } => variants
.iter()
.map(|(v, fields)| {
fields.as_pattern_map(quote! {span => #name :: #v }, span, &field_map)
})
.collect(),
AdtShape::Union => {
never!("pattern matching on union is always wrong");
vec![quote! {span => un }]
}
}
}
}
#[derive(Clone)]
struct BasicAdtInfo {
name: tt::Ident,
shape: AdtShape,
param_types: Vec<AdtParam>,
where_clause: Vec<tt::TopSubtree>,
associated_types: Vec<tt::TopSubtree>,
}
#[derive(Clone)]
struct AdtParam {
name: tt::TopSubtree,
const_ty: Option<tt::TopSubtree>,
bounds: Option<tt::TopSubtree>,
}
fn parse_adt(
db: &dyn ExpandDatabase,
tt: &tt::TopSubtree,
call_site: Span,
) -> Result<BasicAdtInfo, ExpandError> {
let (adt, tm) = to_adt_syntax(db, tt, call_site)?;
parse_adt_from_syntax(&adt, &tm, call_site)
}
fn parse_adt_from_syntax(
adt: &ast::Adt,
tm: &span::SpanMap<SyntaxContext>,
call_site: Span,
) -> Result<BasicAdtInfo, ExpandError> {
let (name, generic_param_list, where_clause, shape) = match &adt {
ast::Adt::Struct(it) => (
it.name(),
it.generic_param_list(),
it.where_clause(),
AdtShape::Struct(VariantShape::from(call_site, tm, it.field_list())?),
),
ast::Adt::Enum(it) => {
let default_variant = it
.variant_list()
.into_iter()
.flat_map(|it| it.variants())
.position(|it| it.attrs().any(|it| it.simple_name() == Some("default".into())));
(
it.name(),
it.generic_param_list(),
it.where_clause(),
AdtShape::Enum {
default_variant,
variants: it
.variant_list()
.into_iter()
.flat_map(|it| it.variants())
.map(|it| {
Ok((
name_to_token(call_site, tm, it.name())?,
VariantShape::from(call_site, tm, it.field_list())?,
))
})
.collect::<Result<_, ExpandError>>()?,
},
)
}
ast::Adt::Union(it) => {
(it.name(), it.generic_param_list(), it.where_clause(), AdtShape::Union)
}
};
let mut param_type_set: FxHashSet<Name> = FxHashSet::default();
let param_types = generic_param_list
.into_iter()
.flat_map(|param_list| param_list.type_or_const_params())
.map(|param| {
let name = {
let this = param.name();
match this {
Some(it) => {
param_type_set.insert(it.as_name());
syntax_bridge::syntax_node_to_token_tree(
it.syntax(),
tm,
call_site,
DocCommentDesugarMode::ProcMacro,
)
}
None => {
tt::TopSubtree::empty(::tt::DelimSpan { open: call_site, close: call_site })
}
}
};
let bounds = match ¶m {
ast::TypeOrConstParam::Type(it) => it.type_bound_list().map(|it| {
syntax_bridge::syntax_node_to_token_tree(
it.syntax(),
tm,
call_site,
DocCommentDesugarMode::ProcMacro,
)
}),
ast::TypeOrConstParam::Const(_) => None,
};
let const_ty = if let ast::TypeOrConstParam::Const(param) = param {
let ty = param
.ty()
.map(|ty| {
syntax_bridge::syntax_node_to_token_tree(
ty.syntax(),
tm,
call_site,
DocCommentDesugarMode::ProcMacro,
)
})
.unwrap_or_else(|| {
tt::TopSubtree::empty(::tt::DelimSpan { open: call_site, close: call_site })
});
Some(ty)
} else {
None
};
AdtParam { name, const_ty, bounds }
})
.collect();
let where_clause = if let Some(w) = where_clause {
w.predicates()
.map(|it| {
syntax_bridge::syntax_node_to_token_tree(
it.syntax(),
tm,
call_site,
DocCommentDesugarMode::ProcMacro,
)
})
.collect()
} else {
vec![]
};
let field_list = match adt {
ast::Adt::Enum(it) => it.variant_list().map(|list| list.syntax().clone()),
ast::Adt::Struct(it) => it.field_list().map(|list| list.syntax().clone()),
ast::Adt::Union(it) => it.record_field_list().map(|list| list.syntax().clone()),
};
let associated_types = field_list
.into_iter()
.flat_map(|it| it.descendants())
.filter_map(ast::PathType::cast)
.filter_map(|p| {
let name = p.path()?.qualifier()?.as_single_name_ref()?.as_name();
param_type_set.contains(&name).then_some(p)
})
.map(|it| {
syntax_bridge::syntax_node_to_token_tree(
it.syntax(),
tm,
call_site,
DocCommentDesugarMode::ProcMacro,
)
})
.collect();
let name_token = name_to_token(call_site, tm, name)?;
Ok(BasicAdtInfo { name: name_token, shape, param_types, where_clause, associated_types })
}
fn to_adt_syntax(
db: &dyn ExpandDatabase,
tt: &tt::TopSubtree,
call_site: Span,
) -> Result<(ast::Adt, span::SpanMap<SyntaxContext>), ExpandError> {
let (parsed, tm) = crate::db::token_tree_to_syntax_node(
db,
tt,
crate::ExpandTo::Items,
parser::Edition::CURRENT_FIXME,
);
let macro_items = ast::MacroItems::cast(parsed.syntax_node())
.ok_or_else(|| ExpandError::other(call_site, "invalid item definition"))?;
let item =
macro_items.items().next().ok_or_else(|| ExpandError::other(call_site, "no item found"))?;
let adt = ast::Adt::cast(item.syntax().clone())
.ok_or_else(|| ExpandError::other(call_site, "expected struct, enum or union"))?;
Ok((adt, tm))
}
fn name_to_token(
call_site: Span,
token_map: &ExpansionSpanMap,
name: Option<ast::Name>,
) -> Result<tt::Ident, ExpandError> {
let name = name.ok_or_else(|| {
debug!("parsed item has no name");
ExpandError::other(call_site, "missing name")
})?;
let span = token_map.span_at(name.syntax().text_range().start());
let name_token = tt::Ident::new(name.text().as_ref(), span);
Ok(name_token)
}
fn expand_simple_derive(
db: &dyn ExpandDatabase,
invoc_span: Span,
tt: &tt::TopSubtree,
trait_path: tt::TopSubtree,
make_trait_body: impl FnOnce(&BasicAdtInfo) -> tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let info = match parse_adt(db, tt, invoc_span) {
Ok(info) => info,
Err(e) => {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan { open: invoc_span, close: invoc_span }),
e,
);
}
};
ExpandResult::ok(expand_simple_derive_with_parsed(
invoc_span,
info,
trait_path,
make_trait_body,
true,
tt::TopSubtree::empty(tt::DelimSpan::from_single(invoc_span)),
))
}
fn expand_simple_derive_with_parsed(
invoc_span: Span,
info: BasicAdtInfo,
trait_path: tt::TopSubtree,
make_trait_body: impl FnOnce(&BasicAdtInfo) -> tt::TopSubtree,
constrain_to_trait: bool,
extra_impl_params: tt::TopSubtree,
) -> tt::TopSubtree {
let trait_body = make_trait_body(&info);
let mut where_block: Vec<_> =
info.where_clause.into_iter().map(|w| quote! {invoc_span => #w , }).collect();
let (params, args): (Vec<_>, Vec<_>) = info
.param_types
.into_iter()
.map(|param| {
let ident = param.name;
if let Some(b) = param.bounds {
let ident2 = ident.clone();
where_block.push(quote! {invoc_span => #ident2 : #b , });
}
if let Some(ty) = param.const_ty {
let ident2 = ident.clone();
(quote! {invoc_span => const #ident : #ty , }, quote! {invoc_span => #ident2 , })
} else {
let bound = trait_path.clone();
let ident2 = ident.clone();
let param = if constrain_to_trait {
quote! {invoc_span => #ident : #bound , }
} else {
quote! {invoc_span => #ident , }
};
(param, quote! {invoc_span => #ident2 , })
}
})
.unzip();
if constrain_to_trait {
where_block.extend(info.associated_types.iter().map(|it| {
let it = it.clone();
let bound = trait_path.clone();
quote! {invoc_span => #it : #bound , }
}));
}
let name = info.name;
quote! {invoc_span =>
impl < # #params #extra_impl_params > #trait_path for #name < # #args > where # #where_block { #trait_body }
}
}
fn copy_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::marker::Copy }, |_| quote! {span =>})
}
fn clone_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::clone::Clone }, |adt| {
if matches!(adt.shape, AdtShape::Union) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn clone(&self) -> Self {
#star self
}
};
}
if matches!(&adt.shape, AdtShape::Enum { variants, .. } if variants.is_empty()) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn clone(&self) -> Self {
match #star self {}
}
};
}
let name = &adt.name;
let patterns = adt.shape.as_pattern(span, name);
let exprs = adt.shape.as_pattern_map(name, |it| quote! {span => #it .clone() }, span);
let arms = patterns.into_iter().zip(exprs).map(|(pat, expr)| {
let fat_arrow = fat_arrow(span);
quote! {span =>
#pat #fat_arrow #expr,
}
});
quote! {span =>
fn clone(&self) -> Self {
match self {
# #arms
}
}
}
})
}
fn fat_arrow(span: Span) -> tt::TopSubtree {
let eq = tt::Punct { char: '=', spacing: ::tt::Spacing::Joint, span };
quote! {span => #eq> }
}
fn and_and(span: Span) -> tt::TopSubtree {
let and = tt::Punct { char: '&', spacing: ::tt::Spacing::Joint, span };
quote! {span => #and& }
}
fn default_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = &dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::default::Default }, |adt| {
let body = match &adt.shape {
AdtShape::Struct(fields) => {
let name = &adt.name;
fields.as_pattern_map(
quote!(span =>#name),
span,
|_| quote!(span =>#krate::default::Default::default()),
)
}
AdtShape::Enum { default_variant, variants } => {
if let Some(d) = default_variant {
let (name, fields) = &variants[*d];
let adt_name = &adt.name;
fields.as_pattern_map(
quote!(span =>#adt_name :: #name),
span,
|_| quote!(span =>#krate::default::Default::default()),
)
} else {
quote!(span =>)
}
}
AdtShape::Union => {
quote!(span =>)
}
};
quote! {span =>
fn default() -> Self {
#body
}
}
})
}
fn debug_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = &dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::fmt::Debug }, |adt| {
let for_variant = |name: String, v: &VariantShape| match v {
VariantShape::Struct(fields) => {
let for_fields = fields.iter().map(|it| {
let x_string = it.to_string();
quote! {span =>
.field(#x_string, & #it)
}
});
quote! {span =>
f.debug_struct(#name) # #for_fields .finish()
}
}
VariantShape::Tuple(n) => {
let for_fields = tuple_field_iterator(span, *n).map(|it| {
quote! {span =>
.field( & #it)
}
});
quote! {span =>
f.debug_tuple(#name) # #for_fields .finish()
}
}
VariantShape::Unit => quote! {span =>
f.write_str(#name)
},
};
if matches!(&adt.shape, AdtShape::Enum { variants, .. } if variants.is_empty()) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn fmt(&self, f: &mut #krate::fmt::Formatter) -> #krate::fmt::Result {
match #star self {}
}
};
}
let arms = match &adt.shape {
AdtShape::Struct(fields) => {
let fat_arrow = fat_arrow(span);
let name = &adt.name;
let pat = fields.as_pattern(quote!(span =>#name), span);
let expr = for_variant(name.to_string(), fields);
vec![quote! {span => #pat #fat_arrow #expr }]
}
AdtShape::Enum { variants, .. } => variants
.iter()
.map(|(name, v)| {
let fat_arrow = fat_arrow(span);
let adt_name = &adt.name;
let pat = v.as_pattern(quote!(span =>#adt_name :: #name), span);
let expr = for_variant(name.to_string(), v);
quote! {span =>
#pat #fat_arrow #expr ,
}
})
.collect(),
AdtShape::Union => {
vec![]
}
};
quote! {span =>
fn fmt(&self, f: &mut #krate::fmt::Formatter) -> #krate::fmt::Result {
match self {
# #arms
}
}
}
})
}
fn hash_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = &dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::hash::Hash }, |adt| {
if matches!(adt.shape, AdtShape::Union) {
return quote! {span =>};
}
if matches!(&adt.shape, AdtShape::Enum { variants, .. } if variants.is_empty()) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn hash<H: #krate::hash::Hasher>(&self, ra_expand_state: &mut H) {
match #star self {}
}
};
}
let arms =
adt.shape.as_pattern(span, &adt.name).into_iter().zip(adt.shape.field_names(span)).map(
|(pat, names)| {
let expr = {
let it =
names.iter().map(|it| quote! {span => #it . hash(ra_expand_state); });
quote! {span => {
# #it
} }
};
let fat_arrow = fat_arrow(span);
quote! {span =>
#pat #fat_arrow #expr ,
}
},
);
let check_discriminant = if matches!(&adt.shape, AdtShape::Enum { .. }) {
quote! {span => #krate::mem::discriminant(self).hash(ra_expand_state); }
} else {
quote! {span =>}
};
quote! {span =>
fn hash<H: #krate::hash::Hasher>(&self, ra_expand_state: &mut H) {
#check_discriminant
match self {
# #arms
}
}
}
})
}
fn eq_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::cmp::Eq }, |_| quote! {span =>})
}
fn partial_eq_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::cmp::PartialEq }, |adt| {
if matches!(adt.shape, AdtShape::Union) {
return quote! {span =>};
}
let name = &adt.name;
let (self_patterns, other_patterns) = self_and_other_patterns(adt, name, span);
let arms = izip!(self_patterns, other_patterns, adt.shape.field_names(span)).map(
|(pat1, pat2, names)| {
let fat_arrow = fat_arrow(span);
let body = match &*names {
[] => {
quote!(span =>true)
}
[first, rest @ ..] => {
let rest = rest.iter().map(|it| {
let t1 = tt::Ident::new(&format!("{}_self", it.sym), it.span);
let t2 = tt::Ident::new(&format!("{}_other", it.sym), it.span);
let and_and = and_and(span);
quote!(span =>#and_and #t1 .eq( #t2 ))
});
let first = {
let t1 = tt::Ident::new(&format!("{}_self", first.sym), first.span);
let t2 = tt::Ident::new(&format!("{}_other", first.sym), first.span);
quote!(span =>#t1 .eq( #t2 ))
};
quote!(span =>#first # #rest)
}
};
quote! {span => ( #pat1 , #pat2 ) #fat_arrow #body , }
},
);
let fat_arrow = fat_arrow(span);
quote! {span =>
fn eq(&self, other: &Self) -> bool {
match (self, other) {
# #arms
_unused #fat_arrow false
}
}
}
})
}
fn self_and_other_patterns(
adt: &BasicAdtInfo,
name: &tt::Ident,
span: Span,
) -> (Vec<tt::TopSubtree>, Vec<tt::TopSubtree>) {
let self_patterns = adt.shape.as_pattern_map(
name,
|it| {
let t = tt::Ident::new(&format!("{}_self", it.sym), it.span);
quote!(span =>#t)
},
span,
);
let other_patterns = adt.shape.as_pattern_map(
name,
|it| {
let t = tt::Ident::new(&format!("{}_other", it.sym), it.span);
quote!(span =>#t)
},
span,
);
(self_patterns, other_patterns)
}
fn ord_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = &dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::cmp::Ord }, |adt| {
fn compare(
krate: &tt::Ident,
left: tt::TopSubtree,
right: tt::TopSubtree,
rest: tt::TopSubtree,
span: Span,
) -> tt::TopSubtree {
let fat_arrow1 = fat_arrow(span);
let fat_arrow2 = fat_arrow(span);
quote! {span =>
match #left.cmp(&#right) {
#krate::cmp::Ordering::Equal #fat_arrow1 {
#rest
}
c #fat_arrow2 return c,
}
}
}
if matches!(adt.shape, AdtShape::Union) {
return quote!(span =>);
}
let (self_patterns, other_patterns) = self_and_other_patterns(adt, &adt.name, span);
let arms = izip!(self_patterns, other_patterns, adt.shape.field_names(span)).map(
|(pat1, pat2, fields)| {
let mut body = quote!(span =>#krate::cmp::Ordering::Equal);
for f in fields.into_iter().rev() {
let t1 = tt::Ident::new(&format!("{}_self", f.sym), f.span);
let t2 = tt::Ident::new(&format!("{}_other", f.sym), f.span);
body = compare(krate, quote!(span =>#t1), quote!(span =>#t2), body, span);
}
let fat_arrow = fat_arrow(span);
quote! {span => ( #pat1 , #pat2 ) #fat_arrow #body , }
},
);
let fat_arrow = fat_arrow(span);
let mut body = quote! {span =>
match (self, other) {
# #arms
_unused #fat_arrow #krate::cmp::Ordering::Equal
}
};
if matches!(&adt.shape, AdtShape::Enum { .. }) {
let left = quote!(span =>#krate::intrinsics::discriminant_value(self));
let right = quote!(span =>#krate::intrinsics::discriminant_value(other));
body = compare(krate, left, right, body, span);
}
quote! {span =>
fn cmp(&self, other: &Self) -> #krate::cmp::Ordering {
#body
}
}
})
}
fn partial_ord_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let krate = &dollar_crate(span);
expand_simple_derive(db, span, tt, quote! {span => #krate::cmp::PartialOrd }, |adt| {
fn compare(
krate: &tt::Ident,
left: tt::TopSubtree,
right: tt::TopSubtree,
rest: tt::TopSubtree,
span: Span,
) -> tt::TopSubtree {
let fat_arrow1 = fat_arrow(span);
let fat_arrow2 = fat_arrow(span);
quote! {span =>
match #left.partial_cmp(&#right) {
#krate::option::Option::Some(#krate::cmp::Ordering::Equal) #fat_arrow1 {
#rest
}
c #fat_arrow2 return c,
}
}
}
if matches!(adt.shape, AdtShape::Union) {
return quote!(span =>);
}
let left = quote!(span =>#krate::intrinsics::discriminant_value(self));
let right = quote!(span =>#krate::intrinsics::discriminant_value(other));
let (self_patterns, other_patterns) = self_and_other_patterns(adt, &adt.name, span);
let arms = izip!(self_patterns, other_patterns, adt.shape.field_names(span)).map(
|(pat1, pat2, fields)| {
let mut body =
quote!(span =>#krate::option::Option::Some(#krate::cmp::Ordering::Equal));
for f in fields.into_iter().rev() {
let t1 = tt::Ident::new(&format!("{}_self", f.sym), f.span);
let t2 = tt::Ident::new(&format!("{}_other", f.sym), f.span);
body = compare(krate, quote!(span =>#t1), quote!(span =>#t2), body, span);
}
let fat_arrow = fat_arrow(span);
quote! {span => ( #pat1 , #pat2 ) #fat_arrow #body , }
},
);
let fat_arrow = fat_arrow(span);
let body = compare(
krate,
left,
right,
quote! {span =>
match (self, other) {
# #arms
_unused #fat_arrow #krate::option::Option::Some(#krate::cmp::Ordering::Equal)
}
},
span,
);
quote! {span =>
fn partial_cmp(&self, other: &Self) -> #krate::option::Option<#krate::cmp::Ordering> {
#body
}
}
})
}
fn coerce_pointee_expand(
db: &dyn ExpandDatabase,
span: Span,
tt: &tt::TopSubtree,
) -> ExpandResult<tt::TopSubtree> {
let (adt, _span_map) = match to_adt_syntax(db, tt, span) {
Ok(it) => it,
Err(err) => {
return ExpandResult::new(tt::TopSubtree::empty(tt::DelimSpan::from_single(span)), err);
}
};
let adt = adt.clone_for_update();
let ast::Adt::Struct(strukt) = &adt else {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(span, "`CoercePointee` can only be derived on `struct`s"),
);
};
let has_at_least_one_field = strukt
.field_list()
.map(|it| match it {
ast::FieldList::RecordFieldList(it) => it.fields().next().is_some(),
ast::FieldList::TupleFieldList(it) => it.fields().next().is_some(),
})
.unwrap_or(false);
if !has_at_least_one_field {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(
span,
"`CoercePointee` can only be derived on `struct`s with at least one field",
),
);
}
let is_repr_transparent = strukt.attrs().any(|attr| {
attr.as_simple_call().is_some_and(|(name, tt)| {
name == "repr"
&& tt.syntax().children_with_tokens().any(|it| {
it.into_token().is_some_and(|it| {
it.kind() == SyntaxKind::IDENT && it.text() == "transparent"
})
})
})
});
if !is_repr_transparent {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(
span,
"`CoercePointee` can only be derived on `struct`s with `#[repr(transparent)]`",
),
);
}
let type_params = strukt
.generic_param_list()
.into_iter()
.flat_map(|generics| {
generics.generic_params().filter_map(|param| match param {
ast::GenericParam::TypeParam(param) => Some(param),
_ => None,
})
})
.collect_vec();
if type_params.is_empty() {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(
span,
"`CoercePointee` can only be derived on `struct`s that are generic over at least one type",
),
);
}
let (pointee_param, pointee_param_idx) = if type_params.len() == 1 {
(type_params[0].clone(), 0)
} else {
let mut pointees = type_params.iter().cloned().enumerate().filter(|(_, param)| {
param.attrs().any(|attr| {
let is_pointee = attr.as_simple_atom().is_some_and(|name| name == "pointee");
if is_pointee {
ted::remove(attr.syntax());
}
is_pointee
})
});
match (pointees.next(), pointees.next()) {
(Some((pointee_idx, pointee)), None) => (pointee, pointee_idx),
(None, _) => {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(
span,
"exactly one generic type parameter must be marked \
as `#[pointee]` to derive `CoercePointee` traits",
),
);
}
(Some(_), Some(_)) => {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(
span,
"only one type parameter can be marked as `#[pointee]` \
when deriving `CoercePointee` traits",
),
);
}
}
};
let (Some(struct_name), Some(pointee_param_name)) = (strukt.name(), pointee_param.name())
else {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(span, "invalid item"),
);
};
{
let mut pointee_has_maybe_sized_bound = false;
if let Some(bounds) = pointee_param.type_bound_list() {
pointee_has_maybe_sized_bound |= bounds.bounds().any(is_maybe_sized_bound);
}
if let Some(where_clause) = strukt.where_clause() {
pointee_has_maybe_sized_bound |= where_clause.predicates().any(|pred| {
let Some(ast::Type::PathType(ty)) = pred.ty() else { return false };
let is_not_pointee = ty.path().is_none_or(|path| {
let is_pointee = path
.as_single_name_ref()
.is_some_and(|name| name.text() == pointee_param_name.text());
!is_pointee
});
if is_not_pointee {
return false;
}
pred.type_bound_list()
.is_some_and(|bounds| bounds.bounds().any(is_maybe_sized_bound))
})
}
if !pointee_has_maybe_sized_bound {
return ExpandResult::new(
tt::TopSubtree::empty(tt::DelimSpan::from_single(span)),
ExpandError::other(
span,
format!(
"`derive(CoercePointee)` requires `{pointee_param_name}` to be marked `?Sized`"
),
),
);
}
}
const ADDED_PARAM: &str = "__S";
let where_clause = strukt.get_or_create_where_clause();
{
let mut new_predicates = Vec::new();
for param in &type_params {
let Some(param_name) = param.name() else { continue };
if let Some(bounds) = param.type_bound_list() {
let is_pointee = param_name.text() == pointee_param_name.text();
let new_bounds = bounds
.bounds()
.map(|bound| bound.clone_subtree().clone_for_update())
.filter(|bound| {
bound.ty().is_some_and(|ty| {
substitute_type_in_bound(ty, &pointee_param_name.text(), ADDED_PARAM)
|| is_pointee
})
});
let new_bounds_target = if is_pointee {
make::name_ref(ADDED_PARAM)
} else {
make::name_ref(¶m_name.text())
};
new_predicates.push(
make::where_pred(
make::ty_path(make::path_from_segments(
[make::path_segment(new_bounds_target)],
false,
)),
new_bounds,
)
.clone_for_update(),
);
}
}
for predicate in where_clause.predicates() {
let predicate = predicate.clone_subtree().clone_for_update();
let Some(pred_target) = predicate.ty() else { continue };
if substitute_type_in_bound(
pred_target.clone(),
&pointee_param_name.text(),
ADDED_PARAM,
) {
if let Some(bounds) = predicate.type_bound_list() {
for bound in bounds.bounds() {
if let Some(ty) = bound.ty() {
substitute_type_in_bound(ty, &pointee_param_name.text(), ADDED_PARAM);
}
}
}
new_predicates.push(predicate);
} else if let Some(bounds) = predicate.type_bound_list() {
let new_bounds = bounds
.bounds()
.map(|bound| bound.clone_subtree().clone_for_update())
.filter(|bound| {
bound.ty().is_some_and(|ty| {
substitute_type_in_bound(ty, &pointee_param_name.text(), ADDED_PARAM)
})
});
new_predicates.push(make::where_pred(pred_target, new_bounds).clone_for_update());
}
}
for new_predicate in new_predicates {
where_clause.add_predicate(new_predicate);
}
}
{
where_clause.add_predicate(
make::where_pred(
make::ty_path(make::path_from_segments(
[make::path_segment(make::name_ref(&pointee_param_name.text()))],
false,
)),
[make::type_bound(make::ty_path(make::path_from_segments(
[
make::path_segment(make::name_ref("core")),
make::path_segment(make::name_ref("marker")),
make::generic_ty_path_segment(
make::name_ref("Unsize"),
[make::type_arg(make::ty_path(make::path_from_segments(
[make::path_segment(make::name_ref(ADDED_PARAM))],
false,
)))
.into()],
),
],
true,
)))],
)
.clone_for_update(),
);
}
let self_for_traits = {
let mut type_param_idx = 0;
let self_params_for_traits = strukt
.generic_param_list()
.into_iter()
.flat_map(|params| params.generic_params())
.filter_map(|param| {
Some(match param {
ast::GenericParam::ConstParam(param) => {
ast::GenericArg::ConstArg(make::expr_const_value(¶m.name()?.text()))
}
ast::GenericParam::LifetimeParam(param) => {
make::lifetime_arg(param.lifetime()?).into()
}
ast::GenericParam::TypeParam(param) => {
let name = if pointee_param_idx == type_param_idx {
make::name_ref(ADDED_PARAM)
} else {
make::name_ref(¶m.name()?.text())
};
type_param_idx += 1;
make::type_arg(make::ty_path(make::path_from_segments(
[make::path_segment(name)],
false,
)))
.into()
}
})
});
make::path_from_segments(
[make::generic_ty_path_segment(
make::name_ref(&struct_name.text()),
self_params_for_traits,
)],
false,
)
.clone_for_update()
};
let mut span_map = span::SpanMap::empty();
span_map.push(adt.syntax().text_range().end(), span);
let self_for_traits = syntax_bridge::syntax_node_to_token_tree(
self_for_traits.syntax(),
&span_map,
span,
DocCommentDesugarMode::ProcMacro,
);
let info = match parse_adt_from_syntax(&adt, &span_map, span) {
Ok(it) => it,
Err(err) => {
return ExpandResult::new(tt::TopSubtree::empty(tt::DelimSpan::from_single(span)), err);
}
};
let self_for_traits2 = self_for_traits.clone();
let krate = dollar_crate(span);
let krate2 = krate.clone();
let dispatch_from_dyn = expand_simple_derive_with_parsed(
span,
info.clone(),
quote! {span => #krate2::ops::DispatchFromDyn<#self_for_traits2> },
|_adt| quote! {span => },
false,
quote! {span => __S },
);
let coerce_unsized = expand_simple_derive_with_parsed(
span,
info,
quote! {span => #krate::ops::CoerceUnsized<#self_for_traits> },
|_adt| quote! {span => },
false,
quote! {span => __S },
);
return ExpandResult::ok(quote! {span => #dispatch_from_dyn #coerce_unsized });
fn is_maybe_sized_bound(bound: ast::TypeBound) -> bool {
if bound.question_mark_token().is_none() {
return false;
}
let Some(ast::Type::PathType(ty)) = bound.ty() else {
return false;
};
let Some(path) = ty.path() else {
return false;
};
return segments_eq(&path, &["Sized"])
|| segments_eq(&path, &["core", "marker", "Sized"])
|| segments_eq(&path, &["std", "marker", "Sized"]);
fn segments_eq(path: &ast::Path, expected: &[&str]) -> bool {
path.segments().zip_longest(expected.iter().copied()).all(|value| {
value.both().is_some_and(|(segment, expected)| {
segment.name_ref().is_some_and(|name| name.text() == expected)
})
})
}
}
fn substitute_type_in_bound(ty: ast::Type, param_name: &str, replacement: &str) -> bool {
return match ty {
ast::Type::ArrayType(ty) => {
ty.ty().is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::DynTraitType(ty) => go_bounds(ty.type_bound_list(), param_name, replacement),
ast::Type::FnPtrType(ty) => any_long(
ty.param_list()
.into_iter()
.flat_map(|params| params.params().filter_map(|param| param.ty()))
.chain(ty.ret_type().and_then(|it| it.ty())),
|ty| substitute_type_in_bound(ty, param_name, replacement),
),
ast::Type::ForType(ty) => {
ty.ty().is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::ImplTraitType(ty) => {
go_bounds(ty.type_bound_list(), param_name, replacement)
}
ast::Type::ParenType(ty) => {
ty.ty().is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::PathType(ty) => ty.path().is_some_and(|path| {
if path.as_single_name_ref().is_some_and(|name| name.text() == param_name) {
ted::replace(
path.syntax(),
make::path_from_segments(
[make::path_segment(make::name_ref(replacement))],
false,
)
.clone_for_update()
.syntax(),
);
return true;
}
any_long(
path.segments()
.filter_map(|segment| segment.generic_arg_list())
.flat_map(|it| it.generic_args())
.filter_map(|generic_arg| match generic_arg {
ast::GenericArg::TypeArg(ty) => ty.ty(),
_ => None,
}),
|ty| substitute_type_in_bound(ty, param_name, replacement),
)
}),
ast::Type::PtrType(ty) => {
ty.ty().is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::RefType(ty) => {
ty.ty().is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::SliceType(ty) => {
ty.ty().is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::TupleType(ty) => {
any_long(ty.fields(), |ty| substitute_type_in_bound(ty, param_name, replacement))
}
ast::Type::InferType(_) | ast::Type::MacroType(_) | ast::Type::NeverType(_) => false,
};
fn go_bounds(
bounds: Option<ast::TypeBoundList>,
param_name: &str,
replacement: &str,
) -> bool {
bounds.is_some_and(|bounds| {
any_long(bounds.bounds(), |bound| {
bound
.ty()
.is_some_and(|ty| substitute_type_in_bound(ty, param_name, replacement))
})
})
}
fn any_long<I: Iterator, F: FnMut(I::Item) -> bool>(iter: I, mut f: F) -> bool {
let mut result = false;
iter.for_each(|item| result |= f(item));
result
}
}
}