hir_ty/
autoderef.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! In certain situations, rust automatically inserts derefs as necessary: for
//! example, field accesses `foo.bar` still work when `foo` is actually a
//! reference to a type with the field `bar`. This is an approximation of the
//! logic in rustc (which lives in rustc_hir_analysis/check/autoderef.rs).

use std::mem;

use chalk_ir::cast::Cast;
use hir_def::lang_item::LangItem;
use hir_expand::name::Name;
use intern::sym;
use limit::Limit;
use triomphe::Arc;

use crate::{
    db::HirDatabase, infer::unify::InferenceTable, Canonical, Goal, Interner, ProjectionTyExt,
    TraitEnvironment, Ty, TyBuilder, TyKind,
};

static AUTODEREF_RECURSION_LIMIT: Limit = Limit::new(10);

#[derive(Debug)]
pub(crate) enum AutoderefKind {
    Builtin,
    Overloaded,
}

/// Returns types that `ty` transitively dereferences to. This function is only meant to be used
/// outside `hir-ty`.
///
/// It is guaranteed that:
/// - the yielded types don't contain inference variables (but may contain `TyKind::Error`).
/// - a type won't be yielded more than once; in other words, the returned iterator will stop if it
///   detects a cycle in the deref chain.
pub fn autoderef(
    db: &dyn HirDatabase,
    env: Arc<TraitEnvironment>,
    ty: Canonical<Ty>,
) -> impl Iterator<Item = Ty> {
    let mut table = InferenceTable::new(db, env);
    let ty = table.instantiate_canonical(ty);
    let mut autoderef = Autoderef::new_no_tracking(&mut table, ty, false);
    let mut v = Vec::new();
    while let Some((ty, _steps)) = autoderef.next() {
        // `ty` may contain unresolved inference variables. Since there's no chance they would be
        // resolved, just replace with fallback type.
        let resolved = autoderef.table.resolve_completely(ty);

        // If the deref chain contains a cycle (e.g. `A` derefs to `B` and `B` derefs to `A`), we
        // would revisit some already visited types. Stop here to avoid duplication.
        //
        // XXX: The recursion limit for `Autoderef` is currently 10, so `Vec::contains()` shouldn't
        // be too expensive. Replace this duplicate check with `FxHashSet` if it proves to be more
        // performant.
        if v.contains(&resolved) {
            break;
        }
        v.push(resolved);
    }
    v.into_iter()
}

trait TrackAutoderefSteps {
    fn len(&self) -> usize;
    fn push(&mut self, kind: AutoderefKind, ty: &Ty);
}

impl TrackAutoderefSteps for usize {
    fn len(&self) -> usize {
        *self
    }
    fn push(&mut self, _: AutoderefKind, _: &Ty) {
        *self += 1;
    }
}
impl TrackAutoderefSteps for Vec<(AutoderefKind, Ty)> {
    fn len(&self) -> usize {
        self.len()
    }
    fn push(&mut self, kind: AutoderefKind, ty: &Ty) {
        self.push((kind, ty.clone()));
    }
}

#[derive(Debug)]
pub(crate) struct Autoderef<'table, 'db, T = Vec<(AutoderefKind, Ty)>> {
    pub(crate) table: &'table mut InferenceTable<'db>,
    ty: Ty,
    at_start: bool,
    steps: T,
    explicit: bool,
}

impl<'table, 'db> Autoderef<'table, 'db> {
    pub(crate) fn new(table: &'table mut InferenceTable<'db>, ty: Ty, explicit: bool) -> Self {
        let ty = table.resolve_ty_shallow(&ty);
        Autoderef { table, ty, at_start: true, steps: Vec::new(), explicit }
    }

    pub(crate) fn steps(&self) -> &[(AutoderefKind, Ty)] {
        &self.steps
    }
}

impl<'table, 'db> Autoderef<'table, 'db, usize> {
    pub(crate) fn new_no_tracking(
        table: &'table mut InferenceTable<'db>,
        ty: Ty,
        explicit: bool,
    ) -> Self {
        let ty = table.resolve_ty_shallow(&ty);
        Autoderef { table, ty, at_start: true, steps: 0, explicit }
    }
}

#[allow(private_bounds)]
impl<T: TrackAutoderefSteps> Autoderef<'_, '_, T> {
    pub(crate) fn step_count(&self) -> usize {
        self.steps.len()
    }

    pub(crate) fn final_ty(&self) -> Ty {
        self.ty.clone()
    }
}

impl<T: TrackAutoderefSteps> Iterator for Autoderef<'_, '_, T> {
    type Item = (Ty, usize);

    #[tracing::instrument(skip_all)]
    fn next(&mut self) -> Option<Self::Item> {
        if mem::take(&mut self.at_start) {
            return Some((self.ty.clone(), 0));
        }

        if AUTODEREF_RECURSION_LIMIT.check(self.steps.len() + 1).is_err() {
            return None;
        }

        let (kind, new_ty) = autoderef_step(self.table, self.ty.clone(), self.explicit)?;

        self.steps.push(kind, &self.ty);
        self.ty = new_ty;

        Some((self.ty.clone(), self.step_count()))
    }
}

pub(crate) fn autoderef_step(
    table: &mut InferenceTable<'_>,
    ty: Ty,
    explicit: bool,
) -> Option<(AutoderefKind, Ty)> {
    if let Some(derefed) = builtin_deref(table.db, &ty, explicit) {
        Some((AutoderefKind::Builtin, table.resolve_ty_shallow(derefed)))
    } else {
        Some((AutoderefKind::Overloaded, deref_by_trait(table, ty)?))
    }
}

pub(crate) fn builtin_deref<'ty>(
    db: &dyn HirDatabase,
    ty: &'ty Ty,
    explicit: bool,
) -> Option<&'ty Ty> {
    match ty.kind(Interner) {
        TyKind::Ref(.., ty) => Some(ty),
        TyKind::Raw(.., ty) if explicit => Some(ty),
        &TyKind::Adt(chalk_ir::AdtId(adt), ref substs) if crate::lang_items::is_box(db, adt) => {
            substs.at(Interner, 0).ty(Interner)
        }
        _ => None,
    }
}

pub(crate) fn deref_by_trait(
    table @ &mut InferenceTable { db, .. }: &mut InferenceTable<'_>,
    ty: Ty,
) -> Option<Ty> {
    let _p = tracing::info_span!("deref_by_trait").entered();
    if table.resolve_ty_shallow(&ty).inference_var(Interner).is_some() {
        // don't try to deref unknown variables
        return None;
    }

    let deref_trait =
        db.lang_item(table.trait_env.krate, LangItem::Deref).and_then(|l| l.as_trait())?;
    let target = db
        .trait_data(deref_trait)
        .associated_type_by_name(&Name::new_symbol_root(sym::Target.clone()))?;

    let projection = {
        let b = TyBuilder::subst_for_def(db, deref_trait, None);
        if b.remaining() != 1 {
            // the Target type + Deref trait should only have one generic parameter,
            // namely Deref's Self type
            return None;
        }
        let deref_subst = b.push(ty).build();
        TyBuilder::assoc_type_projection(db, target, Some(deref_subst)).build()
    };

    // Check that the type implements Deref at all
    let trait_ref = projection.trait_ref(db);
    let implements_goal: Goal = trait_ref.cast(Interner);
    table.try_obligation(implements_goal.clone())?;

    table.register_obligation(implements_goal);

    let result = table.normalize_projection_ty(projection);
    Some(table.resolve_ty_shallow(&result))
}