1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//! Compute the binary representation of structs, unions and enums

use std::{cmp, ops::Bound};

use base_db::ra_salsa::Cycle;
use hir_def::{
    data::adt::VariantData,
    layout::{Integer, ReprOptions, TargetDataLayout},
    AdtId, VariantId,
};
use intern::sym;
use rustc_index::IndexVec;
use smallvec::SmallVec;
use triomphe::Arc;

use crate::{
    db::HirDatabase,
    lang_items::is_unsafe_cell,
    layout::{field_ty, Layout, LayoutError, RustcEnumVariantIdx},
    Substitution, TraitEnvironment,
};

use super::LayoutCx;

pub(crate) fn struct_variant_idx() -> RustcEnumVariantIdx {
    RustcEnumVariantIdx(0)
}

pub fn layout_of_adt_query(
    db: &dyn HirDatabase,
    def: AdtId,
    subst: Substitution,
    trait_env: Arc<TraitEnvironment>,
) -> Result<Arc<Layout>, LayoutError> {
    let krate = trait_env.krate;
    let Ok(target) = db.target_data_layout(krate) else {
        return Err(LayoutError::TargetLayoutNotAvailable);
    };
    let dl = &*target;
    let cx = LayoutCx::new(dl);
    let handle_variant = |def: VariantId, var: &VariantData| {
        var.fields()
            .iter()
            .map(|(fd, _)| db.layout_of_ty(field_ty(db, def, fd, &subst), trait_env.clone()))
            .collect::<Result<Vec<_>, _>>()
    };
    let (variants, repr) = match def {
        AdtId::StructId(s) => {
            let data = db.struct_data(s);
            let mut r = SmallVec::<[_; 1]>::new();
            r.push(handle_variant(s.into(), &data.variant_data)?);
            (r, data.repr.unwrap_or_default())
        }
        AdtId::UnionId(id) => {
            let data = db.union_data(id);
            let mut r = SmallVec::new();
            r.push(handle_variant(id.into(), &data.variant_data)?);
            (r, data.repr.unwrap_or_default())
        }
        AdtId::EnumId(e) => {
            let data = db.enum_data(e);
            let r = data
                .variants
                .iter()
                .map(|&(v, _)| handle_variant(v.into(), &db.enum_variant_data(v).variant_data))
                .collect::<Result<SmallVec<_>, _>>()?;
            (r, data.repr.unwrap_or_default())
        }
    };
    let variants = variants
        .iter()
        .map(|it| it.iter().map(|it| &**it).collect::<Vec<_>>())
        .collect::<SmallVec<[_; 1]>>();
    let variants = variants.iter().map(|it| it.iter().collect()).collect::<IndexVec<_, _>>();
    let result = if matches!(def, AdtId::UnionId(..)) {
        cx.calc.layout_of_union(&repr, &variants)?
    } else {
        cx.calc.layout_of_struct_or_enum(
            &repr,
            &variants,
            matches!(def, AdtId::EnumId(..)),
            is_unsafe_cell(db, def),
            layout_scalar_valid_range(db, def),
            |min, max| repr_discr(dl, &repr, min, max).unwrap_or((Integer::I8, false)),
            variants.iter_enumerated().filter_map(|(id, _)| {
                let AdtId::EnumId(e) = def else { return None };
                let d = db.const_eval_discriminant(db.enum_data(e).variants[id.0].0).ok()?;
                Some((id, d))
            }),
            // FIXME: The current code for niche-filling relies on variant indices
            // instead of actual discriminants, so enums with
            // explicit discriminants (RFC #2363) would misbehave and we should disable
            // niche optimization for them.
            // The code that do it in rustc:
            // repr.inhibit_enum_layout_opt() || def
            //     .variants()
            //     .iter_enumerated()
            //     .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32()))
            repr.inhibit_enum_layout_opt(),
            !matches!(def, AdtId::EnumId(..))
                && variants
                    .iter()
                    .next()
                    .and_then(|it| it.iter().last().map(|it| !it.is_unsized()))
                    .unwrap_or(true),
        )?
    };
    Ok(Arc::new(result))
}

fn layout_scalar_valid_range(db: &dyn HirDatabase, def: AdtId) -> (Bound<u128>, Bound<u128>) {
    let attrs = db.attrs(def.into());
    let get = |name| {
        let attr = attrs.by_key(name).tt_values();
        for tree in attr {
            if let Some(it) = tree.token_trees.first() {
                let text = it.to_string().replace('_', "");
                let (text, base) = match text.as_bytes() {
                    [b'0', b'x', ..] => (&text[2..], 16),
                    [b'0', b'o', ..] => (&text[2..], 8),
                    [b'0', b'b', ..] => (&text[2..], 2),
                    _ => (&*text, 10),
                };

                if let Ok(it) = u128::from_str_radix(text, base) {
                    return Bound::Included(it);
                }
            }
        }
        Bound::Unbounded
    };
    (
        get(&sym::rustc_layout_scalar_valid_range_start),
        get(&sym::rustc_layout_scalar_valid_range_end),
    )
}

pub fn layout_of_adt_recover(
    _: &dyn HirDatabase,
    _: &Cycle,
    _: &AdtId,
    _: &Substitution,
    _: &Arc<TraitEnvironment>,
) -> Result<Arc<Layout>, LayoutError> {
    Err(LayoutError::RecursiveTypeWithoutIndirection)
}

/// Finds the appropriate Integer type and signedness for the given
/// signed discriminant range and `#[repr]` attribute.
/// N.B.: `u128` values above `i128::MAX` will be treated as signed, but
/// that shouldn't affect anything, other than maybe debuginfo.
fn repr_discr(
    dl: &TargetDataLayout,
    repr: &ReprOptions,
    min: i128,
    max: i128,
) -> Result<(Integer, bool), LayoutError> {
    // Theoretically, negative values could be larger in unsigned representation
    // than the unsigned representation of the signed minimum. However, if there
    // are any negative values, the only valid unsigned representation is u128
    // which can fit all i128 values, so the result remains unaffected.
    let unsigned_fit = Integer::fit_unsigned(cmp::max(min as u128, max as u128));
    let signed_fit = cmp::max(Integer::fit_signed(min), Integer::fit_signed(max));

    if let Some(ity) = repr.int {
        let discr = Integer::from_attr(dl, ity);
        let fit = if ity.is_signed() { signed_fit } else { unsigned_fit };
        if discr < fit {
            return Err(LayoutError::UserReprTooSmall);
        }
        return Ok((discr, ity.is_signed()));
    }

    let at_least = if repr.c() {
        // This is usually I32, however it can be different on some platforms,
        // notably hexagon and arm-none/thumb-none
        dl.c_enum_min_size
    } else {
        // repr(Rust) enums try to be as small as possible
        Integer::I8
    };

    // If there are no negative values, we can use the unsigned fit.
    Ok(if min >= 0 {
        (cmp::max(unsigned_fit, at_least), false)
    } else {
        (cmp::max(signed_fit, at_least), true)
    })
}