use hir::Semantics;
use ide_db::{famous_defs::FamousDefs, RootDatabase};
use itertools::Itertools;
use span::EditionedFileId;
use syntax::{
ast::{self, AstNode, HasGenericArgs, HasName},
match_ast,
};
use crate::{
inlay_hints::{closure_has_block_body, label_of_ty, ty_to_text_edit},
InlayHint, InlayHintPosition, InlayHintsConfig, InlayKind,
};
pub(super) fn hints(
acc: &mut Vec<InlayHint>,
famous_defs @ FamousDefs(sema, _): &FamousDefs<'_, '_>,
config: &InlayHintsConfig,
file_id: EditionedFileId,
pat: &ast::IdentPat,
) -> Option<()> {
if !config.type_hints {
return None;
}
let parent = pat.syntax().parent()?;
let type_ascriptable = match_ast! {
match parent {
ast::Param(it) => {
if it.ty().is_some() {
return None;
}
Some(it.colon_token())
},
ast::LetStmt(it) => {
if config.hide_closure_initialization_hints {
if let Some(ast::Expr::ClosureExpr(closure)) = it.initializer() {
if closure_has_block_body(&closure) {
return None;
}
}
}
if it.ty().is_some() {
return None;
}
Some(it.colon_token())
},
_ => None
}
};
let descended = sema.descend_node_into_attributes(pat.clone()).pop();
let desc_pat = descended.as_ref().unwrap_or(pat);
let ty = sema.type_of_binding_in_pat(desc_pat)?;
if ty.is_unknown() {
return None;
}
if sema.resolve_bind_pat_to_const(pat).is_some() {
return None;
}
let mut label = label_of_ty(famous_defs, config, &ty, file_id.edition())?;
if config.hide_named_constructor_hints
&& is_named_constructor(sema, pat, &label.to_string()).is_some()
{
return None;
}
let text_edit = if let Some(colon_token) = &type_ascriptable {
ty_to_text_edit(
sema,
desc_pat.syntax(),
&ty,
colon_token
.as_ref()
.map_or_else(|| pat.syntax().text_range(), |t| t.text_range())
.end(),
if colon_token.is_some() { String::new() } else { String::from(": ") },
)
} else {
None
};
let render_colons = config.render_colons && !matches!(type_ascriptable, Some(Some(_)));
if render_colons {
label.prepend_str(": ");
}
let text_range = match pat.name() {
Some(name) => name.syntax().text_range(),
None => pat.syntax().text_range(),
};
acc.push(InlayHint {
range: match type_ascriptable {
Some(Some(t)) => text_range.cover(t.text_range()),
_ => text_range,
},
kind: InlayKind::Type,
label,
text_edit,
position: InlayHintPosition::After,
pad_left: !render_colons,
pad_right: false,
resolve_parent: Some(pat.syntax().text_range()),
});
Some(())
}
fn is_named_constructor(
sema: &Semantics<'_, RootDatabase>,
pat: &ast::IdentPat,
ty_name: &str,
) -> Option<()> {
let let_node = pat.syntax().parent()?;
let expr = match_ast! {
match let_node {
ast::LetStmt(it) => it.initializer(),
ast::LetExpr(it) => it.expr(),
_ => None,
}
}?;
let expr = sema.descend_node_into_attributes(expr.clone()).pop().unwrap_or(expr);
let expr = match expr {
ast::Expr::TryExpr(it) => it.expr(),
ast::Expr::AwaitExpr(it) => it.expr(),
expr => Some(expr),
}?;
let expr = match expr {
ast::Expr::CallExpr(call) => match call.expr()? {
ast::Expr::PathExpr(path) => path,
_ => return None,
},
ast::Expr::PathExpr(path) => path,
_ => return None,
};
let path = expr.path()?;
let callable = sema.type_of_expr(&ast::Expr::PathExpr(expr))?.original.as_callable(sema.db);
let callable_kind = callable.map(|it| it.kind());
let qual_seg = match callable_kind {
Some(hir::CallableKind::Function(_) | hir::CallableKind::TupleEnumVariant(_)) => {
path.qualifier()?.segment()
}
_ => path.segment(),
}?;
let ctor_name = match qual_seg.kind()? {
ast::PathSegmentKind::Name(name_ref) => {
match qual_seg.generic_arg_list().map(|it| it.generic_args()) {
Some(generics) => format!("{name_ref}<{}>", generics.format(", ")),
None => name_ref.to_string(),
}
}
ast::PathSegmentKind::Type { type_ref: Some(ty), trait_ref: None } => ty.to_string(),
_ => return None,
};
(ctor_name == ty_name).then_some(())
}
#[cfg(test)]
mod tests {
use expect_test::expect;
use hir::ClosureStyle;
use syntax::{TextRange, TextSize};
use test_utils::extract_annotations;
use crate::{fixture, inlay_hints::InlayHintsConfig, ClosureReturnTypeHints};
use crate::inlay_hints::tests::{
check, check_edit, check_no_edit, check_with_config, DISABLED_CONFIG, TEST_CONFIG,
};
#[track_caller]
fn check_types(ra_fixture: &str) {
check_with_config(InlayHintsConfig { type_hints: true, ..DISABLED_CONFIG }, ra_fixture);
}
#[test]
fn type_hints_only() {
check_types(
r#"
fn foo(a: i32, b: i32) -> i32 { a + b }
fn main() {
let _x = foo(4, 4);
//^^ i32
}"#,
);
}
#[test]
fn type_hints_bindings_after_at() {
check_types(
r#"
//- minicore: option
fn main() {
let ref foo @ bar @ ref mut baz = 0;
//^^^ &i32
//^^^ i32
//^^^ &mut i32
let [x @ ..] = [0];
//^ [i32; 1]
if let x @ Some(_) = Some(0) {}
//^ Option<i32>
let foo @ (bar, baz) = (3, 3);
//^^^ (i32, i32)
//^^^ i32
//^^^ i32
}"#,
);
}
#[test]
fn default_generic_types_should_not_be_displayed() {
check(
r#"
struct Test<K, T = u8> { k: K, t: T }
fn main() {
let zz = Test { t: 23u8, k: 33 };
//^^ Test<i32>
let zz_ref = &zz;
//^^^^^^ &Test<i32>
let test = || zz;
//^^^^ impl FnOnce() -> Test<i32>
}"#,
);
}
#[test]
fn shorten_iterators_in_associated_params() {
check_types(
r#"
//- minicore: iterators
use core::iter;
pub struct SomeIter<T> {}
impl<T> SomeIter<T> {
pub fn new() -> Self { SomeIter {} }
pub fn push(&mut self, t: T) {}
}
impl<T> Iterator for SomeIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
None
}
}
fn main() {
let mut some_iter = SomeIter::new();
//^^^^^^^^^ SomeIter<Take<Repeat<i32>>>
some_iter.push(iter::repeat(2).take(2));
let iter_of_iters = some_iter.take(2);
//^^^^^^^^^^^^^ impl Iterator<Item = impl Iterator<Item = i32>>
}
"#,
);
}
#[test]
fn iterator_hint_regression_issue_12674() {
let (analysis, file_id) = fixture::file(
r#"
//- minicore: iterators
struct S<T>(T);
impl<T> S<T> {
fn iter(&self) -> Iter<'_, T> { loop {} }
}
struct Iter<'a, T: 'a>(&'a T);
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> { loop {} }
}
struct Container<'a> {
elements: S<&'a str>,
}
struct SliceIter<'a, T>(&'a T);
impl<'a, T> Iterator for SliceIter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> { loop {} }
}
fn main(a: SliceIter<'_, Container>) {
a
.filter_map(|c| Some(c.elements.iter().filter_map(|v| Some(v))))
.map(|e| e);
}
"#,
);
analysis
.inlay_hints(
&InlayHintsConfig { chaining_hints: true, ..DISABLED_CONFIG },
file_id,
None,
)
.unwrap();
}
#[test]
fn infer_call_method_return_associated_types_with_generic() {
check_types(
r#"
pub trait Default {
fn default() -> Self;
}
pub trait Foo {
type Bar: Default;
}
pub fn quux<T: Foo>() -> T::Bar {
let y = Default::default();
//^ <T as Foo>::Bar
y
}
"#,
);
}
#[test]
fn lt_hints() {
check_types(
r#"
struct S<'lt>;
fn f<'a>() {
let x = S::<'static>;
//^ S<'static>
let y = S::<'_>;
//^ S<'_>
let z = S::<'a>;
//^ S<'a>
}
"#,
);
}
#[test]
fn fn_hints() {
check_types(
r#"
//- minicore: fn, sized
fn foo() -> impl Fn() { loop {} }
fn foo1() -> impl Fn(f64) { loop {} }
fn foo2() -> impl Fn(f64, f64) { loop {} }
fn foo3() -> impl Fn(f64, f64) -> u32 { loop {} }
fn foo4() -> &'static dyn Fn(f64, f64) -> u32 { loop {} }
fn foo5() -> &'static for<'a> dyn Fn(&'a dyn Fn(f64, f64) -> u32, f64) -> u32 { loop {} }
fn foo6() -> impl Fn(f64, f64) -> u32 + Sized { loop {} }
fn foo7() -> *const (impl Fn(f64, f64) -> u32 + Sized) { loop {} }
fn main() {
let foo = foo();
// ^^^ impl Fn()
let foo = foo1();
// ^^^ impl Fn(f64)
let foo = foo2();
// ^^^ impl Fn(f64, f64)
let foo = foo3();
// ^^^ impl Fn(f64, f64) -> u32
let foo = foo4();
// ^^^ &dyn Fn(f64, f64) -> u32
let foo = foo5();
// ^^^ &dyn Fn(&dyn Fn(f64, f64) -> u32, f64) -> u32
let foo = foo6();
// ^^^ impl Fn(f64, f64) -> u32
let foo = foo7();
// ^^^ *const impl Fn(f64, f64) -> u32
}
"#,
)
}
#[test]
fn check_hint_range_limit() {
let fixture = r#"
//- minicore: fn, sized
fn foo() -> impl Fn() { loop {} }
fn foo1() -> impl Fn(f64) { loop {} }
fn foo2() -> impl Fn(f64, f64) { loop {} }
fn foo3() -> impl Fn(f64, f64) -> u32 { loop {} }
fn foo4() -> &'static dyn Fn(f64, f64) -> u32 { loop {} }
fn foo5() -> &'static dyn Fn(&'static dyn Fn(f64, f64) -> u32, f64) -> u32 { loop {} }
fn foo6() -> impl Fn(f64, f64) -> u32 + Sized { loop {} }
fn foo7() -> *const (impl Fn(f64, f64) -> u32 + Sized) { loop {} }
fn main() {
let foo = foo();
let foo = foo1();
let foo = foo2();
// ^^^ impl Fn(f64, f64)
let foo = foo3();
// ^^^ impl Fn(f64, f64) -> u32
let foo = foo4();
let foo = foo5();
let foo = foo6();
let foo = foo7();
}
"#;
let (analysis, file_id) = fixture::file(fixture);
let expected = extract_annotations(&analysis.file_text(file_id).unwrap());
let inlay_hints = analysis
.inlay_hints(
&InlayHintsConfig { type_hints: true, ..DISABLED_CONFIG },
file_id,
Some(TextRange::new(TextSize::from(500), TextSize::from(600))),
)
.unwrap();
let actual =
inlay_hints.into_iter().map(|it| (it.range, it.label.to_string())).collect::<Vec<_>>();
assert_eq!(expected, actual, "\nExpected:\n{expected:#?}\n\nActual:\n{actual:#?}");
}
#[test]
fn fn_hints_ptr_rpit_fn_parentheses() {
check_types(
r#"
//- minicore: fn, sized
trait Trait {}
fn foo1() -> *const impl Fn() { loop {} }
fn foo2() -> *const (impl Fn() + Sized) { loop {} }
fn foo3() -> *const (impl Fn() + ?Sized) { loop {} }
fn foo4() -> *const (impl Sized + Fn()) { loop {} }
fn foo5() -> *const (impl ?Sized + Fn()) { loop {} }
fn foo6() -> *const (impl Fn() + Trait) { loop {} }
fn foo7() -> *const (impl Fn() + Sized + Trait) { loop {} }
fn foo8() -> *const (impl Fn() + ?Sized + Trait) { loop {} }
fn foo9() -> *const (impl Fn() -> u8 + ?Sized) { loop {} }
fn foo10() -> *const (impl Fn() + Sized + ?Sized) { loop {} }
fn main() {
let foo = foo1();
// ^^^ *const impl Fn()
let foo = foo2();
// ^^^ *const impl Fn()
let foo = foo3();
// ^^^ *const (impl Fn() + ?Sized)
let foo = foo4();
// ^^^ *const impl Fn()
let foo = foo5();
// ^^^ *const (impl Fn() + ?Sized)
let foo = foo6();
// ^^^ *const (impl Fn() + Trait)
let foo = foo7();
// ^^^ *const (impl Fn() + Trait)
let foo = foo8();
// ^^^ *const (impl Fn() + Trait + ?Sized)
let foo = foo9();
// ^^^ *const (impl Fn() -> u8 + ?Sized)
let foo = foo10();
// ^^^ *const impl Fn()
}
"#,
)
}
#[test]
fn unit_structs_have_no_type_hints() {
check_types(
r#"
//- minicore: result
struct SyntheticSyntax;
fn main() {
match Ok(()) {
Ok(_) => (),
Err(SyntheticSyntax) => (),
}
}"#,
);
}
#[test]
fn const_pats_have_no_type_hints() {
check_types(
r#"
const FOO: usize = 0;
fn main() {
match 0 {
FOO => (),
_ => ()
}
}"#,
);
}
#[test]
fn let_statement() {
check_types(
r#"
#[derive(PartialEq)]
enum Option<T> { None, Some(T) }
#[derive(PartialEq)]
struct Test { a: Option<u32>, b: u8 }
fn main() {
struct InnerStruct {}
let test = 54;
//^^^^ i32
let test: i32 = 33;
let mut test = 33;
//^^^^ i32
let _ = 22;
let test = "test";
//^^^^ &str
let test = InnerStruct {};
//^^^^ InnerStruct
let test = unresolved();
let test = (42, 'a');
//^^^^ (i32, char)
let (a, (b, (c,)) = (2, (3, (9.2,));
//^ i32 ^ i32 ^ f64
let &x = &92;
//^ i32
}"#,
);
}
#[test]
fn if_expr() {
check_types(
r#"
//- minicore: option
struct Test { a: Option<u32>, b: u8 }
fn main() {
}"#,
);
}
#[test]
fn while_expr() {
check_types(
r#"
//- minicore: option
struct Test { a: Option<u32>, b: u8 }
fn main() {
let test = Some(Test { a: Some(3), b: 1 });
//^^^^ Option<Test>
while let Some(Test { a: Some(x), b: y }) = &test {};
//^ &u32 ^ &u8
}"#,
);
}
#[test]
fn match_arm_list() {
check_types(
r#"
//- minicore: option
struct Test { a: Option<u32>, b: u8 }
fn main() {
match Some(Test { a: Some(3), b: 1 }) {
None => (),
test => (),
//^^^^ Option<Test>
Some(Test { a: Some(x), b: y }) => (),
//^ u32 ^ u8
_ => {}
}
}"#,
);
}
#[test]
fn complete_for_hint() {
check_types(
r#"
//- minicore: iterator
pub struct Vec<T> {}
impl<T> Vec<T> {
pub fn new() -> Self { Vec {} }
pub fn push(&mut self, t: T) {}
}
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
}
struct IntoIter<T> {}
impl<T> Iterator for IntoIter<T> {
type Item = T;
}
fn main() {
let mut data = Vec::new();
//^^^^ Vec<&str>
data.push("foo");
for i in data {
//^ &str
let z = i;
//^ &str
}
}
"#,
);
}
#[test]
fn multi_dyn_trait_bounds() {
check_types(
r#"
pub struct Vec<T> {}
impl<T> Vec<T> {
pub fn new() -> Self { Vec {} }
}
pub struct Box<T> {}
trait Display {}
auto trait Sync {}
fn main() {
// The block expression wrapping disables the constructor hint hiding logic
let _v = { Vec::<Box<&(dyn Display + Sync)>>::new() };
//^^ Vec<Box<&(dyn Display + Sync)>>
let _v = { Vec::<Box<*const (dyn Display + Sync)>>::new() };
//^^ Vec<Box<*const (dyn Display + Sync)>>
let _v = { Vec::<Box<dyn Display + Sync>>::new() };
//^^ Vec<Box<dyn Display + Sync>>
}
"#,
);
}
#[test]
fn shorten_iterator_hints() {
check_types(
r#"
//- minicore: iterators
use core::iter;
struct MyIter;
impl Iterator for MyIter {
type Item = ();
fn next(&mut self) -> Option<Self::Item> {
None
}
}
fn main() {
let _x = MyIter;
//^^ MyIter
let _x = iter::repeat(0);
//^^ impl Iterator<Item = i32>
fn generic<T: Clone>(t: T) {
let _x = iter::repeat(t);
//^^ impl Iterator<Item = T>
let _chained = iter::repeat(t).take(10);
//^^^^^^^^ impl Iterator<Item = T>
}
}
"#,
);
}
#[test]
fn skip_constructor_and_enum_type_hints() {
check_with_config(
InlayHintsConfig {
type_hints: true,
hide_named_constructor_hints: true,
..DISABLED_CONFIG
},
r#"
//- minicore: try, option
use core::ops::ControlFlow;
mod x {
pub mod y { pub struct Foo; }
pub struct Foo;
pub enum AnotherEnum {
Variant()
};
}
struct Struct;
struct TupleStruct();
impl Struct {
fn new() -> Self {
Struct
}
fn try_new() -> ControlFlow<(), Self> {
ControlFlow::Continue(Struct)
}
}
struct Generic<T>(T);
impl Generic<i32> {
fn new() -> Self {
Generic(0)
}
}
enum Enum {
Variant(u32)
}
fn times2(value: i32) -> i32 {
2 * value
}
fn main() {
let enumb = Enum::Variant(0);
let strukt = x::Foo;
let strukt = x::y::Foo;
let strukt = Struct;
let strukt = Struct::new();
let tuple_struct = TupleStruct();
let generic0 = Generic::new();
// ^^^^^^^^ Generic<i32>
let generic1 = Generic(0);
// ^^^^^^^^ Generic<i32>
let generic2 = Generic::<i32>::new();
let generic3 = <Generic<i32>>::new();
let generic4 = Generic::<i32>(0);
let option = Some(0);
// ^^^^^^ Option<i32>
let func = times2;
// ^^^^ fn times2(i32) -> i32
let closure = |x: i32| x * 2;
// ^^^^^^^ impl Fn(i32) -> i32
}
fn fallible() -> ControlFlow<()> {
let strukt = Struct::try_new()?;
}
"#,
);
}
#[test]
fn shows_constructor_type_hints_when_enabled() {
check_types(
r#"
//- minicore: try
use core::ops::ControlFlow;
struct Struct;
struct TupleStruct();
impl Struct {
fn new() -> Self {
Struct
}
fn try_new() -> ControlFlow<(), Self> {
ControlFlow::Continue(Struct)
}
}
struct Generic<T>(T);
impl Generic<i32> {
fn new() -> Self {
Generic(0)
}
}
fn main() {
let strukt = Struct::new();
// ^^^^^^ Struct
let tuple_struct = TupleStruct();
// ^^^^^^^^^^^^ TupleStruct
let generic0 = Generic::new();
// ^^^^^^^^ Generic<i32>
let generic1 = Generic::<i32>::new();
// ^^^^^^^^ Generic<i32>
let generic2 = <Generic<i32>>::new();
// ^^^^^^^^ Generic<i32>
}
fn fallible() -> ControlFlow<()> {
let strukt = Struct::try_new()?;
// ^^^^^^ Struct
}
"#,
);
}
#[test]
fn closure_style() {
check_with_config(
InlayHintsConfig { type_hints: true, ..DISABLED_CONFIG },
r#"
//- minicore: fn
fn main() {
let x = || 2;
//^ impl Fn() -> i32
let y = |t: i32| x() + t;
//^ impl Fn(i32) -> i32
let mut t = 5;
//^ i32
let z = |k: i32| { t += k; };
//^ impl FnMut(i32)
let p = (y, z);
//^ (impl Fn(i32) -> i32, impl FnMut(i32))
}
"#,
);
check_with_config(
InlayHintsConfig {
type_hints: true,
closure_style: ClosureStyle::RANotation,
..DISABLED_CONFIG
},
r#"
//- minicore: fn
fn main() {
let x = || 2;
//^ || -> i32
let y = |t: i32| x() + t;
//^ |i32| -> i32
let mut t = 5;
//^ i32
let z = |k: i32| { t += k; };
//^ |i32| -> ()
let p = (y, z);
//^ (|i32| -> i32, |i32| -> ())
}
"#,
);
check_with_config(
InlayHintsConfig {
type_hints: true,
closure_style: ClosureStyle::ClosureWithId,
..DISABLED_CONFIG
},
r#"
//- minicore: fn
fn main() {
let x = || 2;
//^ {closure#0}
let y = |t: i32| x() + t;
//^ {closure#1}
let mut t = 5;
//^ i32
let z = |k: i32| { t += k; };
//^ {closure#2}
let p = (y, z);
//^ ({closure#1}, {closure#2})
}
"#,
);
check_with_config(
InlayHintsConfig {
type_hints: true,
closure_style: ClosureStyle::Hide,
..DISABLED_CONFIG
},
r#"
//- minicore: fn
fn main() {
let x = || 2;
//^ …
let y = |t: i32| x() + t;
//^ …
let mut t = 5;
//^ i32
let z = |k: i32| { t += k; };
//^ …
let p = (y, z);
//^ (…, …)
}
"#,
);
}
#[test]
fn skip_closure_type_hints() {
check_with_config(
InlayHintsConfig {
type_hints: true,
hide_closure_initialization_hints: true,
..DISABLED_CONFIG
},
r#"
//- minicore: fn
fn main() {
let multiple_2 = |x: i32| { x * 2 };
let multiple_2 = |x: i32| x * 2;
// ^^^^^^^^^^ impl Fn(i32) -> i32
let (not) = (|x: bool| { !x });
// ^^^ impl Fn(bool) -> bool
let (is_zero, _b) = (|x: usize| { x == 0 }, false);
// ^^^^^^^ impl Fn(usize) -> bool
// ^^ bool
let plus_one = |x| { x + 1 };
// ^ u8
foo(plus_one);
let add_mul = bar(|x: u8| { x + 1 });
// ^^^^^^^ impl FnOnce(u8) -> u8 + ?Sized
let closure = if let Some(6) = add_mul(2).checked_sub(1) {
// ^^^^^^^ fn(i32) -> i32
|x: i32| { x * 2 }
} else {
|x: i32| { x * 3 }
};
}
fn foo(f: impl FnOnce(u8) -> u8) {}
fn bar(f: impl FnOnce(u8) -> u8) -> impl FnOnce(u8) -> u8 {
move |x: u8| f(x) * 2
}
"#,
);
}
#[test]
fn hint_truncation() {
check_with_config(
InlayHintsConfig { max_length: Some(8), ..TEST_CONFIG },
r#"
struct Smol<T>(T);
struct VeryLongOuterName<T>(T);
fn main() {
let a = Smol(0u32);
//^ Smol<u32>
let b = VeryLongOuterName(0usize);
//^ VeryLongOuterName<…>
let c = Smol(Smol(0u32))
//^ Smol<Smol<…>>
}"#,
);
}
#[test]
fn edit_for_let_stmt() {
check_edit(
TEST_CONFIG,
r#"
struct S<T>(T);
fn test<F>(v: S<(S<i32>, S<()>)>, f: F) {
let a = v;
let S((b, c)) = v;
let a @ S((b, c)) = v;
let a = f;
}
"#,
expect![[r#"
struct S<T>(T);
fn test<F>(v: S<(S<i32>, S<()>)>, f: F) {
let a: S<(S<i32>, S<()>)> = v;
let S((b, c)) = v;
let a @ S((b, c)): S<(S<i32>, S<()>)> = v;
let a: F = f;
}
"#]],
);
}
#[test]
fn edit_for_closure_param() {
check_edit(
TEST_CONFIG,
r#"
fn test<T>(t: T) {
let f = |a, b, c| {};
let result = f(42, "", t);
}
"#,
expect![[r#"
fn test<T>(t: T) {
let f = |a: i32, b: &str, c: T| {};
let result: () = f(42, "", t);
}
"#]],
);
}
#[test]
fn edit_for_closure_ret() {
check_edit(
TEST_CONFIG,
r#"
struct S<T>(T);
fn test() {
let f = || { 3 };
let f = |a: S<usize>| { S(a) };
}
"#,
expect![[r#"
struct S<T>(T);
fn test() {
let f = || -> i32 { 3 };
let f = |a: S<usize>| -> S<S<usize>> { S(a) };
}
"#]],
);
}
#[test]
fn edit_prefixes_paths() {
check_edit(
TEST_CONFIG,
r#"
pub struct S<T>(T);
mod middle {
pub struct S<T, U>(T, U);
pub fn make() -> S<inner::S<i64>, super::S<usize>> { loop {} }
mod inner {
pub struct S<T>(T);
}
fn test() {
let a = make();
}
}
"#,
expect![[r#"
pub struct S<T>(T);
mod middle {
pub struct S<T, U>(T, U);
pub fn make() -> S<inner::S<i64>, super::S<usize>> { loop {} }
mod inner {
pub struct S<T>(T);
}
fn test() {
let a: S<inner::S<i64>, crate::S<usize>> = make();
}
}
"#]],
);
}
#[test]
fn no_edit_for_top_pat_where_type_annotation_is_invalid() {
check_no_edit(
TEST_CONFIG,
r#"
fn test() {
if let a = 42 {}
while let a = 42 {}
match 42 {
a => (),
}
}
"#,
)
}
#[test]
fn no_edit_for_opaque_type() {
check_no_edit(
TEST_CONFIG,
r#"
trait Trait {}
struct S<T>(T);
fn foo() -> impl Trait {}
fn bar() -> S<impl Trait> {}
fn test() {
let a = foo();
let a = bar();
let f = || { foo() };
let f = || { bar() };
}
"#,
);
}
#[test]
fn no_edit_for_closure_return_without_body_block() {
let config = InlayHintsConfig {
closure_return_type_hints: ClosureReturnTypeHints::Always,
..TEST_CONFIG
};
check_no_edit(
config,
r#"
struct S<T>(T);
fn test() {
let f = || 3;
let f = |a: S<usize>| S(a);
}
"#,
);
}
#[test]
fn type_hints_async_block() {
check_types(
r#"
//- minicore: future
async fn main() {
let _x = async { 8_i32 };
//^^ impl Future<Output = i32>
}"#,
);
}
#[test]
fn type_hints_async_block_with_tail_return_exp() {
check_types(
r#"
//- minicore: future
async fn main() {
let _x = async {
//^^ impl Future<Output = i32>
return 8_i32;
};
}"#,
);
}
#[test]
fn works_in_included_file() {
check_types(
r#"
//- minicore: include
//- /main.rs
include!("foo.rs");
//- /foo.rs
fn main() {
let _x = 42;
//^^ i32
}"#,
);
}
}