1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
//! Various helper functions to work with SyntaxNodes.
use itertools::Itertools;
use parser::T;
use span::Edition;
use syntax::{
    ast::{self, HasLoopBody, MacroCall, PathSegmentKind, VisibilityKind},
    AstNode, AstToken, Preorder, RustLanguage, WalkEvent,
};

pub fn expr_as_name_ref(expr: &ast::Expr) -> Option<ast::NameRef> {
    if let ast::Expr::PathExpr(expr) = expr {
        let path = expr.path()?;
        path.as_single_name_ref()
    } else {
        None
    }
}

pub fn full_path_of_name_ref(name_ref: &ast::NameRef) -> Option<ast::Path> {
    let mut ancestors = name_ref.syntax().ancestors();
    let _ = ancestors.next()?; // skip self
    let _ = ancestors.next().filter(|it| ast::PathSegment::can_cast(it.kind()))?; // skip self
    ancestors.take_while(|it| ast::Path::can_cast(it.kind())).last().and_then(ast::Path::cast)
}

pub fn block_as_lone_tail(block: &ast::BlockExpr) -> Option<ast::Expr> {
    block.statements().next().is_none().then(|| block.tail_expr()).flatten()
}

/// Preorder walk all the expression's child expressions.
pub fn walk_expr(expr: &ast::Expr, cb: &mut dyn FnMut(ast::Expr)) {
    preorder_expr(expr, &mut |ev| {
        if let WalkEvent::Enter(expr) = ev {
            cb(expr);
        }
        false
    })
}

pub fn is_closure_or_blk_with_modif(expr: &ast::Expr) -> bool {
    match expr {
        ast::Expr::BlockExpr(block_expr) => {
            matches!(
                block_expr.modifier(),
                Some(
                    ast::BlockModifier::Async(_)
                        | ast::BlockModifier::Try(_)
                        | ast::BlockModifier::Const(_)
                )
            )
        }
        ast::Expr::ClosureExpr(_) => true,
        _ => false,
    }
}

/// Preorder walk all the expression's child expressions preserving events.
/// If the callback returns true on an [`WalkEvent::Enter`], the subtree of the expression will be skipped.
/// Note that the subtree may already be skipped due to the context analysis this function does.
pub fn preorder_expr(start: &ast::Expr, cb: &mut dyn FnMut(WalkEvent<ast::Expr>) -> bool) {
    preorder_expr_with_ctx_checker(start, &is_closure_or_blk_with_modif, cb);
}

pub fn preorder_expr_with_ctx_checker(
    start: &ast::Expr,
    check_ctx: &dyn Fn(&ast::Expr) -> bool,
    cb: &mut dyn FnMut(WalkEvent<ast::Expr>) -> bool,
) {
    let mut preorder = start.syntax().preorder();
    while let Some(event) = preorder.next() {
        let node = match event {
            WalkEvent::Enter(node) => node,
            WalkEvent::Leave(node) => {
                if let Some(expr) = ast::Expr::cast(node) {
                    cb(WalkEvent::Leave(expr));
                }
                continue;
            }
        };
        if let Some(let_stmt) = node.parent().and_then(ast::LetStmt::cast) {
            if let_stmt.initializer().map(|it| it.syntax() != &node).unwrap_or(true)
                && let_stmt.let_else().map(|it| it.syntax() != &node).unwrap_or(true)
            {
                // skipping potential const pat expressions in  let statements
                preorder.skip_subtree();
                continue;
            }
        }

        match ast::Stmt::cast(node.clone()) {
            // Don't skip subtree since we want to process the expression child next
            Some(ast::Stmt::ExprStmt(_)) | Some(ast::Stmt::LetStmt(_)) => (),
            // skip inner items which might have their own expressions
            Some(ast::Stmt::Item(_)) => preorder.skip_subtree(),
            None => {
                // skip const args, those expressions are a different context
                if ast::GenericArg::can_cast(node.kind()) {
                    preorder.skip_subtree();
                } else if let Some(expr) = ast::Expr::cast(node) {
                    let is_different_context = check_ctx(&expr) && expr.syntax() != start.syntax();
                    let skip = cb(WalkEvent::Enter(expr));
                    if skip || is_different_context {
                        preorder.skip_subtree();
                    }
                }
            }
        }
    }
}

/// Preorder walk all the expression's child patterns.
pub fn walk_patterns_in_expr(start: &ast::Expr, cb: &mut dyn FnMut(ast::Pat)) {
    let mut preorder = start.syntax().preorder();
    while let Some(event) = preorder.next() {
        let node = match event {
            WalkEvent::Enter(node) => node,
            WalkEvent::Leave(_) => continue,
        };
        match ast::Stmt::cast(node.clone()) {
            Some(ast::Stmt::LetStmt(l)) => {
                if let Some(pat) = l.pat() {
                    walk_pat(&pat, cb);
                }
                if let Some(expr) = l.initializer() {
                    walk_patterns_in_expr(&expr, cb);
                }
                preorder.skip_subtree();
            }
            // Don't skip subtree since we want to process the expression child next
            Some(ast::Stmt::ExprStmt(_)) => (),
            // skip inner items which might have their own patterns
            Some(ast::Stmt::Item(_)) => preorder.skip_subtree(),
            None => {
                // skip const args, those are a different context
                if ast::GenericArg::can_cast(node.kind()) {
                    preorder.skip_subtree();
                } else if let Some(expr) = ast::Expr::cast(node.clone()) {
                    let is_different_context = match &expr {
                        ast::Expr::BlockExpr(block_expr) => {
                            matches!(
                                block_expr.modifier(),
                                Some(
                                    ast::BlockModifier::Async(_)
                                        | ast::BlockModifier::Try(_)
                                        | ast::BlockModifier::Const(_)
                                )
                            )
                        }
                        ast::Expr::ClosureExpr(_) => true,
                        _ => false,
                    } && expr.syntax() != start.syntax();
                    if is_different_context {
                        preorder.skip_subtree();
                    }
                } else if let Some(pat) = ast::Pat::cast(node) {
                    preorder.skip_subtree();
                    walk_pat(&pat, cb);
                }
            }
        }
    }
}

/// Preorder walk all the pattern's sub patterns.
pub fn walk_pat(pat: &ast::Pat, cb: &mut dyn FnMut(ast::Pat)) {
    let mut preorder = pat.syntax().preorder();
    while let Some(event) = preorder.next() {
        let node = match event {
            WalkEvent::Enter(node) => node,
            WalkEvent::Leave(_) => continue,
        };
        let kind = node.kind();
        match ast::Pat::cast(node) {
            Some(pat @ ast::Pat::ConstBlockPat(_)) => {
                preorder.skip_subtree();
                cb(pat);
            }
            Some(pat) => {
                cb(pat);
            }
            // skip const args
            None if ast::GenericArg::can_cast(kind) => {
                preorder.skip_subtree();
            }
            None => (),
        }
    }
}

/// Preorder walk all the type's sub types.
// FIXME: Make the control flow more proper
pub fn walk_ty(ty: &ast::Type, cb: &mut dyn FnMut(ast::Type) -> bool) {
    let mut preorder = ty.syntax().preorder();
    while let Some(event) = preorder.next() {
        let node = match event {
            WalkEvent::Enter(node) => node,
            WalkEvent::Leave(_) => continue,
        };
        let kind = node.kind();
        match ast::Type::cast(node) {
            Some(ty @ ast::Type::MacroType(_)) => {
                preorder.skip_subtree();
                cb(ty);
            }
            Some(ty) => {
                if cb(ty) {
                    preorder.skip_subtree();
                }
            }
            // skip const args
            None if ast::ConstArg::can_cast(kind) => {
                preorder.skip_subtree();
            }
            None => (),
        }
    }
}

pub fn vis_eq(this: &ast::Visibility, other: &ast::Visibility) -> bool {
    match (this.kind(), other.kind()) {
        (VisibilityKind::In(this), VisibilityKind::In(other)) => {
            stdx::iter_eq_by(this.segments(), other.segments(), |lhs, rhs| {
                lhs.kind().zip(rhs.kind()).map_or(false, |it| match it {
                    (PathSegmentKind::CrateKw, PathSegmentKind::CrateKw)
                    | (PathSegmentKind::SelfKw, PathSegmentKind::SelfKw)
                    | (PathSegmentKind::SuperKw, PathSegmentKind::SuperKw) => true,
                    (PathSegmentKind::Name(lhs), PathSegmentKind::Name(rhs)) => {
                        lhs.text() == rhs.text()
                    }
                    _ => false,
                })
            })
        }
        (VisibilityKind::PubSelf, VisibilityKind::PubSelf)
        | (VisibilityKind::PubSuper, VisibilityKind::PubSuper)
        | (VisibilityKind::PubCrate, VisibilityKind::PubCrate)
        | (VisibilityKind::Pub, VisibilityKind::Pub) => true,
        _ => false,
    }
}

/// Returns the `let` only if there is exactly one (that is, `let pat = expr`
/// or `((let pat = expr))`, but not `let pat = expr && expr` or `non_let_expr`).
pub fn single_let(expr: ast::Expr) -> Option<ast::LetExpr> {
    match expr {
        ast::Expr::ParenExpr(expr) => expr.expr().and_then(single_let),
        ast::Expr::LetExpr(expr) => Some(expr),
        _ => None,
    }
}

pub fn is_pattern_cond(expr: ast::Expr) -> bool {
    match expr {
        ast::Expr::BinExpr(expr)
            if expr.op_kind() == Some(ast::BinaryOp::LogicOp(ast::LogicOp::And)) =>
        {
            expr.lhs()
                .map(is_pattern_cond)
                .or_else(|| expr.rhs().map(is_pattern_cond))
                .unwrap_or(false)
        }
        ast::Expr::ParenExpr(expr) => expr.expr().map_or(false, is_pattern_cond),
        ast::Expr::LetExpr(_) => true,
        _ => false,
    }
}

/// Calls `cb` on each expression inside `expr` that is at "tail position".
/// Does not walk into `break` or `return` expressions.
/// Note that modifying the tree while iterating it will cause undefined iteration which might
/// potentially results in an out of bounds panic.
pub fn for_each_tail_expr(expr: &ast::Expr, cb: &mut dyn FnMut(&ast::Expr)) {
    let walk_loop = |cb: &mut dyn FnMut(&ast::Expr), label, body: Option<ast::BlockExpr>| {
        for_each_break_expr(label, body.and_then(|it| it.stmt_list()), &mut |b| {
            cb(&ast::Expr::BreakExpr(b))
        })
    };
    match expr {
        ast::Expr::BlockExpr(b) => {
            match b.modifier() {
                Some(
                    ast::BlockModifier::Async(_)
                    | ast::BlockModifier::Try(_)
                    | ast::BlockModifier::Const(_),
                ) => return cb(expr),

                Some(ast::BlockModifier::Label(label)) => {
                    for_each_break_expr(Some(label), b.stmt_list(), &mut |b| {
                        cb(&ast::Expr::BreakExpr(b))
                    });
                }
                Some(ast::BlockModifier::Unsafe(_)) => (),
                Some(ast::BlockModifier::Gen(_)) => (),
                Some(ast::BlockModifier::AsyncGen(_)) => (),
                None => (),
            }
            if let Some(stmt_list) = b.stmt_list() {
                if let Some(e) = stmt_list.tail_expr() {
                    for_each_tail_expr(&e, cb);
                }
            }
        }
        ast::Expr::IfExpr(if_) => {
            let mut if_ = if_.clone();
            loop {
                if let Some(block) = if_.then_branch() {
                    for_each_tail_expr(&ast::Expr::BlockExpr(block), cb);
                }
                match if_.else_branch() {
                    Some(ast::ElseBranch::IfExpr(it)) => if_ = it,
                    Some(ast::ElseBranch::Block(block)) => {
                        for_each_tail_expr(&ast::Expr::BlockExpr(block), cb);
                        break;
                    }
                    None => break,
                }
            }
        }
        ast::Expr::LoopExpr(l) => walk_loop(cb, l.label(), l.loop_body()),
        ast::Expr::WhileExpr(w) => walk_loop(cb, w.label(), w.loop_body()),
        ast::Expr::ForExpr(f) => walk_loop(cb, f.label(), f.loop_body()),
        ast::Expr::MatchExpr(m) => {
            if let Some(arms) = m.match_arm_list() {
                arms.arms().filter_map(|arm| arm.expr()).for_each(|e| for_each_tail_expr(&e, cb));
            }
        }
        ast::Expr::ArrayExpr(_)
        | ast::Expr::AwaitExpr(_)
        | ast::Expr::BinExpr(_)
        | ast::Expr::BreakExpr(_)
        | ast::Expr::CallExpr(_)
        | ast::Expr::CastExpr(_)
        | ast::Expr::ClosureExpr(_)
        | ast::Expr::ContinueExpr(_)
        | ast::Expr::FieldExpr(_)
        | ast::Expr::IndexExpr(_)
        | ast::Expr::Literal(_)
        | ast::Expr::MacroExpr(_)
        | ast::Expr::MethodCallExpr(_)
        | ast::Expr::ParenExpr(_)
        | ast::Expr::PathExpr(_)
        | ast::Expr::PrefixExpr(_)
        | ast::Expr::RangeExpr(_)
        | ast::Expr::RecordExpr(_)
        | ast::Expr::RefExpr(_)
        | ast::Expr::ReturnExpr(_)
        | ast::Expr::BecomeExpr(_)
        | ast::Expr::TryExpr(_)
        | ast::Expr::TupleExpr(_)
        | ast::Expr::LetExpr(_)
        | ast::Expr::UnderscoreExpr(_)
        | ast::Expr::YieldExpr(_)
        | ast::Expr::YeetExpr(_)
        | ast::Expr::OffsetOfExpr(_)
        | ast::Expr::FormatArgsExpr(_)
        | ast::Expr::AsmExpr(_) => cb(expr),
    }
}

pub fn for_each_break_and_continue_expr(
    label: Option<ast::Label>,
    body: Option<ast::StmtList>,
    cb: &mut dyn FnMut(ast::Expr),
) {
    let label = label.and_then(|lbl| lbl.lifetime());
    if let Some(b) = body {
        let tree_depth_iterator = TreeWithDepthIterator::new(b);
        for (expr, depth) in tree_depth_iterator {
            match expr {
                ast::Expr::BreakExpr(b)
                    if (depth == 0 && b.lifetime().is_none())
                        || eq_label_lt(&label, &b.lifetime()) =>
                {
                    cb(ast::Expr::BreakExpr(b));
                }
                ast::Expr::ContinueExpr(c)
                    if (depth == 0 && c.lifetime().is_none())
                        || eq_label_lt(&label, &c.lifetime()) =>
                {
                    cb(ast::Expr::ContinueExpr(c));
                }
                _ => (),
            }
        }
    }
}

fn for_each_break_expr(
    label: Option<ast::Label>,
    body: Option<ast::StmtList>,
    cb: &mut dyn FnMut(ast::BreakExpr),
) {
    let label = label.and_then(|lbl| lbl.lifetime());
    if let Some(b) = body {
        let tree_depth_iterator = TreeWithDepthIterator::new(b);
        for (expr, depth) in tree_depth_iterator {
            match expr {
                ast::Expr::BreakExpr(b)
                    if (depth == 0 && b.lifetime().is_none())
                        || eq_label_lt(&label, &b.lifetime()) =>
                {
                    cb(b);
                }
                _ => (),
            }
        }
    }
}

pub fn eq_label_lt(lt1: &Option<ast::Lifetime>, lt2: &Option<ast::Lifetime>) -> bool {
    lt1.as_ref().zip(lt2.as_ref()).map_or(false, |(lt, lbl)| lt.text() == lbl.text())
}

struct TreeWithDepthIterator {
    preorder: Preorder<RustLanguage>,
    depth: u32,
}

impl TreeWithDepthIterator {
    fn new(body: ast::StmtList) -> Self {
        let preorder = body.syntax().preorder();
        Self { preorder, depth: 0 }
    }
}

impl Iterator for TreeWithDepthIterator {
    type Item = (ast::Expr, u32);

    fn next(&mut self) -> Option<Self::Item> {
        while let Some(event) = self.preorder.find_map(|ev| match ev {
            WalkEvent::Enter(it) => ast::Expr::cast(it).map(WalkEvent::Enter),
            WalkEvent::Leave(it) => ast::Expr::cast(it).map(WalkEvent::Leave),
        }) {
            match event {
                WalkEvent::Enter(
                    ast::Expr::LoopExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::ForExpr(_),
                ) => {
                    self.depth += 1;
                }
                WalkEvent::Leave(
                    ast::Expr::LoopExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::ForExpr(_),
                ) => {
                    self.depth -= 1;
                }
                WalkEvent::Enter(ast::Expr::BlockExpr(e)) if e.label().is_some() => {
                    self.depth += 1;
                }
                WalkEvent::Leave(ast::Expr::BlockExpr(e)) if e.label().is_some() => {
                    self.depth -= 1;
                }
                WalkEvent::Enter(expr) => return Some((expr, self.depth)),
                _ => (),
            }
        }
        None
    }
}

/// Parses the input token tree as comma separated plain paths.
pub fn parse_tt_as_comma_sep_paths(
    input: ast::TokenTree,
    edition: Edition,
) -> Option<Vec<ast::Path>> {
    let r_paren = input.r_paren_token();
    let tokens =
        input.syntax().children_with_tokens().skip(1).map_while(|it| match it.into_token() {
            // seeing a keyword means the attribute is unclosed so stop parsing here
            Some(tok) if tok.kind().is_keyword(edition) => None,
            // don't include the right token tree parenthesis if it exists
            tok @ Some(_) if tok == r_paren => None,
            // only nodes that we can find are other TokenTrees, those are unexpected in this parse though
            None => None,
            Some(tok) => Some(tok),
        });
    let input_expressions = tokens.group_by(|tok| tok.kind() == T![,]);
    let paths = input_expressions
        .into_iter()
        .filter_map(|(is_sep, group)| (!is_sep).then_some(group))
        .filter_map(|mut tokens| {
            syntax::hacks::parse_expr_from_str(&tokens.join(""), Edition::CURRENT).and_then(
                |expr| match expr {
                    ast::Expr::PathExpr(it) => it.path(),
                    _ => None,
                },
            )
        })
        .collect();
    Some(paths)
}

pub fn macro_call_for_string_token(string: &ast::String) -> Option<MacroCall> {
    let macro_call = string.syntax().parent_ancestors().find_map(ast::MacroCall::cast)?;
    Some(macro_call)
}