use std::{collections::hash_map::Entry, str::FromStr};
use hir::Semantics;
use itertools::Itertools;
use rustc_hash::FxHashMap;
use stdx::to_lower_snake_case;
use syntax::{
ast::{self, HasName},
match_ast, AstNode, Edition, SmolStr, SmolStrBuilder,
};
use crate::RootDatabase;
const USELESS_TRAITS: &[&str] = &["Send", "Sync", "Copy", "Clone", "Eq", "PartialEq"];
const USELESS_NAMES: &[&str] =
&["new", "default", "option", "some", "none", "ok", "err", "str", "string", "from", "into"];
const USELESS_NAME_PREFIXES: &[&str] = &["from_", "with_", "into_"];
const WRAPPER_TYPES: &[&str] = &["Box", "Option", "Result"];
const USELESS_METHOD_PREFIXES: &[&str] = &["into_", "as_", "to_"];
const USELESS_METHODS: &[&str] = &[
"to_string",
"as_str",
"to_owned",
"as_ref",
"clone",
"cloned",
"expect",
"expect_none",
"unwrap",
"unwrap_none",
"unwrap_or",
"unwrap_or_default",
"unwrap_or_else",
"unwrap_unchecked",
"iter",
"into_iter",
"iter_mut",
"into_future",
];
#[derive(Debug, Default)]
pub struct NameGenerator {
pool: FxHashMap<SmolStr, usize>,
}
impl NameGenerator {
pub fn new() -> Self {
Self { pool: FxHashMap::default() }
}
pub fn new_with_names<'a>(existing_names: impl Iterator<Item = &'a str>) -> Self {
let mut generator = Self::new();
existing_names.for_each(|name| generator.insert(name));
generator
}
pub fn suggest_name(&mut self, name: &str) -> SmolStr {
let (prefix, suffix) = Self::split_numeric_suffix(name);
let prefix = SmolStr::new(prefix);
let suffix = suffix.unwrap_or(0);
match self.pool.entry(prefix.clone()) {
Entry::Vacant(entry) => {
entry.insert(suffix);
SmolStr::from_str(name).unwrap()
}
Entry::Occupied(mut entry) => {
let count = entry.get_mut();
*count = (*count + 1).max(suffix);
let mut new_name = SmolStrBuilder::new();
new_name.push_str(&prefix);
new_name.push_str(count.to_string().as_str());
new_name.finish()
}
}
}
pub fn for_type(
&mut self,
ty: &hir::Type,
db: &RootDatabase,
edition: Edition,
) -> Option<SmolStr> {
let name = name_of_type(ty, db, edition)?;
Some(self.suggest_name(&name))
}
pub fn for_impl_trait_as_generic(&mut self, ty: &ast::ImplTraitType) -> SmolStr {
let c = ty
.type_bound_list()
.and_then(|bounds| bounds.syntax().text().char_at(0.into()))
.unwrap_or('T');
self.suggest_name(&c.to_string())
}
fn insert(&mut self, name: &str) {
let (prefix, suffix) = Self::split_numeric_suffix(name);
let prefix = SmolStr::new(prefix);
let suffix = suffix.unwrap_or(0);
match self.pool.entry(prefix) {
Entry::Vacant(entry) => {
entry.insert(suffix);
}
Entry::Occupied(mut entry) => {
let count = entry.get_mut();
*count = (*count).max(suffix);
}
}
}
fn split_numeric_suffix(name: &str) -> (&str, Option<usize>) {
let pos =
name.rfind(|c: char| !c.is_numeric()).expect("Name cannot be empty or all-numeric");
let (prefix, suffix) = name.split_at(pos + 1);
(prefix, suffix.parse().ok())
}
}
pub fn for_variable(expr: &ast::Expr, sema: &Semantics<'_, RootDatabase>) -> String {
if let Some(name) = from_param(expr, sema) {
return name;
}
let mut next_expr = Some(expr.clone());
while let Some(expr) = next_expr {
let name =
from_call(&expr).or_else(|| from_type(&expr, sema)).or_else(|| from_field_name(&expr));
if let Some(name) = name {
return name;
}
match expr {
ast::Expr::RefExpr(inner) => next_expr = inner.expr(),
ast::Expr::AwaitExpr(inner) => next_expr = inner.expr(),
ast::Expr::CastExpr(inner) => next_expr = inner.expr(),
ast::Expr::MethodCallExpr(method) if is_useless_method(&method) => {
next_expr = method.receiver();
}
ast::Expr::ParenExpr(inner) => next_expr = inner.expr(),
ast::Expr::TryExpr(inner) => next_expr = inner.expr(),
ast::Expr::PrefixExpr(prefix) if prefix.op_kind() == Some(ast::UnaryOp::Deref) => {
next_expr = prefix.expr()
}
_ => break,
}
}
"var_name".to_owned()
}
fn normalize(name: &str) -> Option<String> {
let name = to_lower_snake_case(name);
if USELESS_NAMES.contains(&name.as_str()) {
return None;
}
if USELESS_NAME_PREFIXES.iter().any(|prefix| name.starts_with(prefix)) {
return None;
}
if !is_valid_name(&name) {
return None;
}
Some(name)
}
fn is_valid_name(name: &str) -> bool {
matches!(
super::LexedStr::single_token(syntax::Edition::CURRENT_FIXME, name),
Some((syntax::SyntaxKind::IDENT, _error))
)
}
fn is_useless_method(method: &ast::MethodCallExpr) -> bool {
let ident = method.name_ref().and_then(|it| it.ident_token());
match ident {
Some(ident) => USELESS_METHODS.contains(&ident.text()),
None => false,
}
}
fn from_call(expr: &ast::Expr) -> Option<String> {
from_func_call(expr).or_else(|| from_method_call(expr))
}
fn from_func_call(expr: &ast::Expr) -> Option<String> {
let call = match expr {
ast::Expr::CallExpr(call) => call,
_ => return None,
};
let func = match call.expr()? {
ast::Expr::PathExpr(path) => path,
_ => return None,
};
let ident = func.path()?.segment()?.name_ref()?.ident_token()?;
normalize(ident.text())
}
fn from_method_call(expr: &ast::Expr) -> Option<String> {
let method = match expr {
ast::Expr::MethodCallExpr(call) => call,
_ => return None,
};
let ident = method.name_ref()?.ident_token()?;
let mut name = ident.text();
if USELESS_METHODS.contains(&name) {
return None;
}
for prefix in USELESS_METHOD_PREFIXES {
if let Some(suffix) = name.strip_prefix(prefix) {
name = suffix;
break;
}
}
normalize(name)
}
fn from_param(expr: &ast::Expr, sema: &Semantics<'_, RootDatabase>) -> Option<String> {
let arg_list = expr.syntax().parent().and_then(ast::ArgList::cast)?;
let args_parent = arg_list.syntax().parent()?;
let func = match_ast! {
match args_parent {
ast::CallExpr(call) => {
let func = call.expr()?;
let func_ty = sema.type_of_expr(&func)?.adjusted();
func_ty.as_callable(sema.db)?
},
ast::MethodCallExpr(method) => sema.resolve_method_call_as_callable(&method)?,
_ => return None,
}
};
let (idx, _) = arg_list.args().find_position(|it| it == expr).unwrap();
let param = func.params().into_iter().nth(idx)?;
let pat = sema.source(param)?.value.right()?.pat()?;
let name = var_name_from_pat(&pat)?;
normalize(&name.to_string())
}
fn var_name_from_pat(pat: &ast::Pat) -> Option<ast::Name> {
match pat {
ast::Pat::IdentPat(var) => var.name(),
ast::Pat::RefPat(ref_pat) => var_name_from_pat(&ref_pat.pat()?),
ast::Pat::BoxPat(box_pat) => var_name_from_pat(&box_pat.pat()?),
_ => None,
}
}
fn from_type(expr: &ast::Expr, sema: &Semantics<'_, RootDatabase>) -> Option<String> {
let ty = sema.type_of_expr(expr)?.adjusted();
let ty = ty.remove_ref().unwrap_or(ty);
let edition = sema.scope(expr.syntax())?.krate().edition(sema.db);
name_of_type(&ty, sema.db, edition)
}
fn name_of_type(ty: &hir::Type, db: &RootDatabase, edition: Edition) -> Option<String> {
let name = if let Some(adt) = ty.as_adt() {
let name = adt.name(db).display(db, edition).to_string();
if WRAPPER_TYPES.contains(&name.as_str()) {
let inner_ty = ty.type_arguments().next()?;
return name_of_type(&inner_ty, db, edition);
}
name
} else if let Some(trait_) = ty.as_dyn_trait() {
trait_name(&trait_, db, edition)?
} else if let Some(traits) = ty.as_impl_traits(db) {
let mut iter = traits.filter_map(|t| trait_name(&t, db, edition));
let name = iter.next()?;
if iter.next().is_some() {
return None;
}
name
} else {
return None;
};
normalize(&name)
}
fn trait_name(trait_: &hir::Trait, db: &RootDatabase, edition: Edition) -> Option<String> {
let name = trait_.name(db).display(db, edition).to_string();
if USELESS_TRAITS.contains(&name.as_str()) {
return None;
}
Some(name)
}
fn from_field_name(expr: &ast::Expr) -> Option<String> {
let field = match expr {
ast::Expr::FieldExpr(field) => field,
_ => return None,
};
let ident = field.name_ref()?.ident_token()?;
normalize(ident.text())
}
#[cfg(test)]
mod tests {
use hir::FileRange;
use test_fixture::WithFixture;
use super::*;
#[track_caller]
fn check(ra_fixture: &str, expected: &str) {
let (db, file_id, range_or_offset) = RootDatabase::with_range_or_offset(ra_fixture);
let frange = FileRange { file_id, range: range_or_offset.into() };
let sema = Semantics::new(&db);
let source_file = sema.parse(frange.file_id);
let element = source_file.syntax().covering_element(frange.range);
let expr =
element.ancestors().find_map(ast::Expr::cast).expect("selection is not an expression");
assert_eq!(
expr.syntax().text_range(),
frange.range,
"selection is not an expression(yet contained in one)"
);
let name = for_variable(&expr, &sema);
assert_eq!(&name, expected);
}
#[test]
fn no_args() {
check(r#"fn foo() { $0bar()$0 }"#, "bar");
check(r#"fn foo() { $0bar.frobnicate()$0 }"#, "frobnicate");
}
#[test]
fn single_arg() {
check(r#"fn foo() { $0bar(1)$0 }"#, "bar");
}
#[test]
fn many_args() {
check(r#"fn foo() { $0bar(1, 2, 3)$0 }"#, "bar");
}
#[test]
fn path() {
check(r#"fn foo() { $0i32::bar(1, 2, 3)$0 }"#, "bar");
}
#[test]
fn generic_params() {
check(r#"fn foo() { $0bar::<i32>(1, 2, 3)$0 }"#, "bar");
check(r#"fn foo() { $0bar.frobnicate::<i32, u32>()$0 }"#, "frobnicate");
}
#[test]
fn to_name() {
check(
r#"
struct Args;
struct Config;
impl Args {
fn to_config(&self) -> Config {}
}
fn foo() {
$0Args.to_config()$0;
}
"#,
"config",
);
}
#[test]
fn plain_func() {
check(
r#"
fn bar(n: i32, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn mut_param() {
check(
r#"
fn bar(mut n: i32, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn func_does_not_exist() {
check(r#"fn foo() { bar($01$0, 2) }"#, "var_name");
}
#[test]
fn unnamed_param() {
check(
r#"
fn bar(_: i32, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"var_name",
);
}
#[test]
fn tuple_pat() {
check(
r#"
fn bar((n, k): (i32, i32), m: u32);
fn foo() {
bar($0(1, 2)$0, 3)
}
"#,
"var_name",
);
}
#[test]
fn ref_pat() {
check(
r#"
fn bar(&n: &i32, m: u32);
fn foo() { bar($0&1$0, 3) }
"#,
"n",
);
}
#[test]
fn box_pat() {
check(
r#"
fn bar(box n: &i32, m: u32);
fn foo() { bar($01$0, 3) }
"#,
"n",
);
}
#[test]
fn param_out_of_index() {
check(
r#"
fn bar(n: i32, m: u32);
fn foo() { bar(1, 2, $03$0) }
"#,
"var_name",
);
}
#[test]
fn generic_param_resolved() {
check(
r#"
fn bar<T>(n: T, m: u32);
fn foo() { bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn generic_param_unresolved() {
check(
r#"
fn bar<T>(n: T, m: u32);
fn foo<T>(x: T) { bar($0x$0, 2) }
"#,
"n",
);
}
#[test]
fn method() {
check(
r#"
struct S;
impl S { fn bar(&self, n: i32, m: u32); }
fn foo() { S.bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn method_on_impl_trait() {
check(
r#"
struct S;
trait T {
fn bar(&self, n: i32, m: u32);
}
impl T for S { fn bar(&self, n: i32, m: u32); }
fn foo() { S.bar($01$0, 2) }
"#,
"n",
);
}
#[test]
fn method_ufcs() {
check(
r#"
struct S;
impl S { fn bar(&self, n: i32, m: u32); }
fn foo() { S::bar(&S, $01$0, 2) }
"#,
"n",
);
}
#[test]
fn method_self() {
check(
r#"
struct S;
impl S { fn bar(&self, n: i32, m: u32); }
fn foo() { S::bar($0&S$0, 1, 2) }
"#,
"s",
);
}
#[test]
fn method_self_named() {
check(
r#"
struct S;
impl S { fn bar(strukt: &Self, n: i32, m: u32); }
fn foo() { S::bar($0&S$0, 1, 2) }
"#,
"strukt",
);
}
#[test]
fn i32() {
check(r#"fn foo() { let _: i32 = $01$0; }"#, "var_name");
}
#[test]
fn u64() {
check(r#"fn foo() { let _: u64 = $01$0; }"#, "var_name");
}
#[test]
fn bool() {
check(r#"fn foo() { let _: bool = $0true$0; }"#, "var_name");
}
#[test]
fn struct_unit() {
check(
r#"
struct Seed;
fn foo() { let _ = $0Seed$0; }
"#,
"seed",
);
}
#[test]
fn struct_unit_to_snake() {
check(
r#"
struct SeedState;
fn foo() { let _ = $0SeedState$0; }
"#,
"seed_state",
);
}
#[test]
fn struct_single_arg() {
check(
r#"
struct Seed(u32);
fn foo() { let _ = $0Seed(0)$0; }
"#,
"seed",
);
}
#[test]
fn struct_with_fields() {
check(
r#"
struct Seed { value: u32 }
fn foo() { let _ = $0Seed { value: 0 }$0; }
"#,
"seed",
);
}
#[test]
fn enum_() {
check(
r#"
enum Kind { A, B }
fn foo() { let _ = $0Kind::A$0; }
"#,
"kind",
);
}
#[test]
fn enum_generic_resolved() {
check(
r#"
enum Kind<T> { A { x: T }, B }
fn foo() { let _ = $0Kind::A { x:1 }$0; }
"#,
"kind",
);
}
#[test]
fn enum_generic_unresolved() {
check(
r#"
enum Kind<T> { A { x: T }, B }
fn foo<T>(x: T) { let _ = $0Kind::A { x }$0; }
"#,
"kind",
);
}
#[test]
fn dyn_trait() {
check(
r#"
trait DynHandler {}
fn bar() -> dyn DynHandler {}
fn foo() { $0(bar())$0; }
"#,
"dyn_handler",
);
}
#[test]
fn impl_trait() {
check(
r#"
trait StaticHandler {}
fn bar() -> impl StaticHandler {}
fn foo() { $0(bar())$0; }
"#,
"static_handler",
);
}
#[test]
fn impl_trait_plus_clone() {
check(
r#"
trait StaticHandler {}
trait Clone {}
fn bar() -> impl StaticHandler + Clone {}
fn foo() { $0(bar())$0; }
"#,
"static_handler",
);
}
#[test]
fn impl_trait_plus_lifetime() {
check(
r#"
trait StaticHandler {}
trait Clone {}
fn bar<'a>(&'a i32) -> impl StaticHandler + 'a {}
fn foo() { $0(bar(&1))$0; }
"#,
"static_handler",
);
}
#[test]
fn impl_trait_plus_trait() {
check(
r#"
trait Handler {}
trait StaticHandler {}
fn bar() -> impl StaticHandler + Handler {}
fn foo() { $0(bar())$0; }
"#,
"bar",
);
}
#[test]
fn ref_value() {
check(
r#"
struct Seed;
fn bar() -> &Seed {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn box_value() {
check(
r#"
struct Box<T>(*const T);
struct Seed;
fn bar() -> Box<Seed> {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn box_generic() {
check(
r#"
struct Box<T>(*const T);
fn bar<T>() -> Box<T> {}
fn foo<T>() { $0(bar::<T>())$0; }
"#,
"bar",
);
}
#[test]
fn option_value() {
check(
r#"
enum Option<T> { Some(T) }
struct Seed;
fn bar() -> Option<Seed> {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn result_value() {
check(
r#"
enum Result<T, E> { Ok(T), Err(E) }
struct Seed;
struct Error;
fn bar() -> Result<Seed, Error> {}
fn foo() { $0(bar())$0; }
"#,
"seed",
);
}
#[test]
fn ref_call() {
check(
r#"
fn foo() { $0&bar(1, 3)$0 }
"#,
"bar",
);
}
#[test]
fn name_to_string() {
check(
r#"
fn foo() { $0function.name().to_string()$0 }
"#,
"name",
);
}
#[test]
fn nested_useless_method() {
check(
r#"
fn foo() { $0function.name().as_ref().unwrap().to_string()$0 }
"#,
"name",
);
}
#[test]
fn struct_field_name() {
check(
r#"
struct S<T> {
some_field: T;
}
fn foo<T>(some_struct: S<T>) { $0some_struct.some_field$0 }
"#,
"some_field",
);
}
#[test]
fn from_and_to_func() {
check(
r#"
//- minicore: from
struct Foo;
struct Bar;
impl From<Foo> for Bar {
fn from(_: Foo) -> Self {
Bar;
}
}
fn f(_: Bar) {}
fn main() {
let foo = Foo {};
f($0Bar::from(foo)$0);
}
"#,
"bar",
);
check(
r#"
//- minicore: from
struct Foo;
struct Bar;
impl From<Foo> for Bar {
fn from(_: Foo) -> Self {
Bar;
}
}
fn f(_: Bar) {}
fn main() {
let foo = Foo {};
f($0Into::<Bar>::into(foo)$0);
}
"#,
"bar",
);
}
#[test]
fn useless_name_prefix() {
check(
r#"
struct Foo;
struct Bar;
impl Bar {
fn from_foo(_: Foo) -> Self {
Foo {}
}
}
fn main() {
let foo = Foo {};
let _ = $0Bar::from_foo(foo)$0;
}
"#,
"bar",
);
check(
r#"
struct Foo;
struct Bar;
impl Bar {
fn with_foo(_: Foo) -> Self {
Bar {}
}
}
fn main() {
let foo = Foo {};
let _ = $0Bar::with_foo(foo)$0;
}
"#,
"bar",
);
}
#[test]
fn conflicts_with_existing_names() {
let mut generator = NameGenerator::new();
assert_eq!(generator.suggest_name("a"), "a");
assert_eq!(generator.suggest_name("a"), "a1");
assert_eq!(generator.suggest_name("a"), "a2");
assert_eq!(generator.suggest_name("a"), "a3");
assert_eq!(generator.suggest_name("b"), "b");
assert_eq!(generator.suggest_name("b2"), "b2");
assert_eq!(generator.suggest_name("b"), "b3");
assert_eq!(generator.suggest_name("b"), "b4");
assert_eq!(generator.suggest_name("b3"), "b5");
let mut generator = NameGenerator::new_with_names(["a", "b", "b2", "c4"].into_iter());
assert_eq!(generator.suggest_name("a"), "a1");
assert_eq!(generator.suggest_name("a"), "a2");
assert_eq!(generator.suggest_name("b"), "b3");
assert_eq!(generator.suggest_name("b2"), "b4");
assert_eq!(generator.suggest_name("c"), "c5");
}
}