ide_ssr/
matching.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
//! This module is responsible for matching a search pattern against a node in the AST. In the
//! process of matching, placeholder values are recorded.

use crate::{
    parsing::{Constraint, NodeKind, Placeholder, Var},
    resolving::{ResolvedPattern, ResolvedRule, UfcsCallInfo},
    SsrMatches,
};
use hir::{FileRange, ImportPathConfig, Semantics};
use ide_db::FxHashMap;
use parser::Edition;
use std::{cell::Cell, iter::Peekable};
use syntax::{
    ast::{self, AstNode, AstToken, HasGenericArgs},
    SmolStr, SyntaxElement, SyntaxElementChildren, SyntaxKind, SyntaxNode, SyntaxToken,
};

// Creates a match error. If we're currently attempting to match some code that we thought we were
// going to match, as indicated by the --debug-snippet flag, then populate the reason field.
macro_rules! match_error {
    ($e:expr) => {{
            MatchFailed {
                reason: if recording_match_fail_reasons() {
                    Some(format!("{}", $e))
                } else {
                    None
                }
            }
    }};
    ($fmt:expr, $($arg:tt)+) => {{
        MatchFailed {
            reason: if recording_match_fail_reasons() {
                Some(format!($fmt, $($arg)+))
            } else {
                None
            }
        }
    }};
}

// Fails the current match attempt, recording the supplied reason if we're recording match fail reasons.
macro_rules! fail_match {
    ($($args:tt)*) => {return Err(match_error!($($args)*))};
}

/// Information about a match that was found.
#[derive(Debug)]
pub struct Match {
    pub(crate) range: FileRange,
    pub(crate) matched_node: SyntaxNode,
    pub(crate) placeholder_values: FxHashMap<Var, PlaceholderMatch>,
    pub(crate) ignored_comments: Vec<ast::Comment>,
    pub(crate) rule_index: usize,
    /// The depth of matched_node.
    pub(crate) depth: usize,
    // Each path in the template rendered for the module in which the match was found.
    pub(crate) rendered_template_paths: FxHashMap<SyntaxNode, hir::ModPath>,
}

/// Information about a placeholder bound in a match.
#[derive(Debug)]
pub(crate) struct PlaceholderMatch {
    pub(crate) range: FileRange,
    /// More matches, found within `node`.
    pub(crate) inner_matches: SsrMatches,
    /// How many times the code that the placeholder matched needed to be dereferenced. Will only be
    /// non-zero if the placeholder matched to the receiver of a method call.
    pub(crate) autoderef_count: usize,
    pub(crate) autoref_kind: ast::SelfParamKind,
}

#[derive(Debug)]
pub(crate) struct MatchFailureReason {
    pub(crate) reason: String,
}

/// An "error" indicating that matching failed. Use the fail_match! macro to create and return this.
#[derive(Clone)]
pub(crate) struct MatchFailed {
    /// The reason why we failed to match. Only present when debug_active true in call to
    /// `get_match`.
    pub(crate) reason: Option<String>,
}

/// Checks if `code` matches the search pattern found in `search_scope`, returning information about
/// the match, if it does. Since we only do matching in this module and searching is done by the
/// parent module, we don't populate nested matches.
pub(crate) fn get_match(
    debug_active: bool,
    rule: &ResolvedRule,
    code: &SyntaxNode,
    restrict_range: &Option<FileRange>,
    sema: &Semantics<'_, ide_db::RootDatabase>,
) -> Result<Match, MatchFailed> {
    record_match_fails_reasons_scope(debug_active, || {
        Matcher::try_match(rule, code, restrict_range, sema)
    })
}

/// Checks if our search pattern matches a particular node of the AST.
struct Matcher<'db, 'sema> {
    sema: &'sema Semantics<'db, ide_db::RootDatabase>,
    /// If any placeholders come from anywhere outside of this range, then the match will be
    /// rejected.
    restrict_range: Option<FileRange>,
    rule: &'sema ResolvedRule,
}

/// Which phase of matching we're currently performing. We do two phases because most attempted
/// matches will fail and it means we can defer more expensive checks to the second phase.
enum Phase<'a> {
    /// On the first phase, we perform cheap checks. No state is mutated and nothing is recorded.
    First,
    /// On the second phase, we construct the `Match`. Things like what placeholders bind to is
    /// recorded.
    Second(&'a mut Match),
}

impl<'db, 'sema> Matcher<'db, 'sema> {
    fn try_match(
        rule: &ResolvedRule,
        code: &SyntaxNode,
        restrict_range: &Option<FileRange>,
        sema: &'sema Semantics<'db, ide_db::RootDatabase>,
    ) -> Result<Match, MatchFailed> {
        let match_state = Matcher { sema, restrict_range: *restrict_range, rule };
        // First pass at matching, where we check that node types and idents match.
        match_state.attempt_match_node(&mut Phase::First, &rule.pattern.node, code)?;
        let file_range = sema
            .original_range_opt(code)
            .ok_or(MatchFailed { reason: Some("def site definition".to_owned()) })?;
        match_state.validate_range(&file_range)?;
        let mut the_match = Match {
            range: file_range,
            matched_node: code.clone(),
            placeholder_values: FxHashMap::default(),
            ignored_comments: Vec::new(),
            rule_index: rule.index,
            depth: 0,
            rendered_template_paths: FxHashMap::default(),
        };
        // Second matching pass, where we record placeholder matches, ignored comments and maybe do
        // any other more expensive checks that we didn't want to do on the first pass.
        match_state.attempt_match_node(
            &mut Phase::Second(&mut the_match),
            &rule.pattern.node,
            code,
        )?;
        the_match.depth = sema.ancestors_with_macros(the_match.matched_node.clone()).count();
        if let Some(template) = &rule.template {
            the_match.render_template_paths(template, sema)?;
        }
        Ok(the_match)
    }

    /// Checks that `range` is within the permitted range if any. This is applicable when we're
    /// processing a macro expansion and we want to fail the match if we're working with a node that
    /// didn't originate from the token tree of the macro call.
    fn validate_range(&self, range: &FileRange) -> Result<(), MatchFailed> {
        if let Some(restrict_range) = &self.restrict_range {
            if restrict_range.file_id != range.file_id
                || !restrict_range.range.contains_range(range.range)
            {
                fail_match!("Node originated from a macro");
            }
        }
        Ok(())
    }

    fn attempt_match_node(
        &self,
        phase: &mut Phase<'_>,
        pattern: &SyntaxNode,
        code: &SyntaxNode,
    ) -> Result<(), MatchFailed> {
        // Handle placeholders.
        if let Some(placeholder) = self.get_placeholder_for_node(pattern) {
            for constraint in &placeholder.constraints {
                self.check_constraint(constraint, code)?;
            }
            if let Phase::Second(matches_out) = phase {
                let original_range = self
                    .sema
                    .original_range_opt(code)
                    .ok_or(MatchFailed { reason: Some("def site definition".to_owned()) })?;
                // We validated the range for the node when we started the match, so the placeholder
                // probably can't fail range validation, but just to be safe...
                self.validate_range(&original_range)?;
                matches_out.placeholder_values.insert(
                    placeholder.ident.clone(),
                    PlaceholderMatch::from_range(original_range),
                );
            }
            return Ok(());
        }
        // We allow a UFCS call to match a method call, provided they resolve to the same function.
        if let Some(pattern_ufcs) = self.rule.pattern.ufcs_function_calls.get(pattern) {
            if let Some(code) = ast::MethodCallExpr::cast(code.clone()) {
                return self.attempt_match_ufcs_to_method_call(phase, pattern_ufcs, &code);
            }
            if let Some(code) = ast::CallExpr::cast(code.clone()) {
                return self.attempt_match_ufcs_to_ufcs(phase, pattern_ufcs, &code);
            }
        }
        if pattern.kind() != code.kind() {
            fail_match!(
                "Pattern had `{}` ({:?}), code had `{}` ({:?})",
                pattern.text(),
                pattern.kind(),
                code.text(),
                code.kind()
            );
        }
        // Some kinds of nodes have special handling. For everything else, we fall back to default
        // matching.
        match code.kind() {
            SyntaxKind::RECORD_EXPR_FIELD_LIST => {
                self.attempt_match_record_field_list(phase, pattern, code)
            }
            SyntaxKind::TOKEN_TREE => self.attempt_match_token_tree(phase, pattern, code),
            SyntaxKind::PATH => self.attempt_match_path(phase, pattern, code),
            _ => self.attempt_match_node_children(phase, pattern, code),
        }
    }

    fn attempt_match_node_children(
        &self,
        phase: &mut Phase<'_>,
        pattern: &SyntaxNode,
        code: &SyntaxNode,
    ) -> Result<(), MatchFailed> {
        self.attempt_match_sequences(
            phase,
            PatternIterator::new(pattern),
            code.children_with_tokens(),
        )
    }

    fn attempt_match_sequences(
        &self,
        phase: &mut Phase<'_>,
        pattern_it: PatternIterator,
        mut code_it: SyntaxElementChildren,
    ) -> Result<(), MatchFailed> {
        let mut pattern_it = pattern_it.peekable();
        loop {
            match phase.next_non_trivial(&mut code_it) {
                None => {
                    if let Some(p) = pattern_it.next() {
                        fail_match!("Part of the pattern was unmatched: {:?}", p);
                    }
                    return Ok(());
                }
                Some(SyntaxElement::Token(c)) => {
                    self.attempt_match_token(phase, &mut pattern_it, &c)?;
                }
                Some(SyntaxElement::Node(c)) => match pattern_it.next() {
                    Some(SyntaxElement::Node(p)) => {
                        self.attempt_match_node(phase, &p, &c)?;
                    }
                    Some(p) => fail_match!("Pattern wanted '{}', code has {}", p, c.text()),
                    None => fail_match!("Pattern reached end, code has {}", c.text()),
                },
            }
        }
    }

    fn attempt_match_token(
        &self,
        phase: &mut Phase<'_>,
        pattern: &mut Peekable<PatternIterator>,
        code: &syntax::SyntaxToken,
    ) -> Result<(), MatchFailed> {
        phase.record_ignored_comments(code);
        // Ignore whitespace and comments.
        if code.kind().is_trivia() {
            return Ok(());
        }
        if let Some(SyntaxElement::Token(p)) = pattern.peek() {
            // If the code has a comma and the pattern is about to close something, then accept the
            // comma without advancing the pattern. i.e. ignore trailing commas.
            if code.kind() == SyntaxKind::COMMA && is_closing_token(p.kind()) {
                return Ok(());
            }
            // Conversely, if the pattern has a comma and the code doesn't, skip that part of the
            // pattern and continue to match the code.
            if p.kind() == SyntaxKind::COMMA && is_closing_token(code.kind()) {
                pattern.next();
            }
        }
        // Consume an element from the pattern and make sure it matches.
        match pattern.next() {
            Some(SyntaxElement::Token(p)) => {
                if p.kind() != code.kind() || p.text() != code.text() {
                    fail_match!(
                        "Pattern wanted token '{}' ({:?}), but code had token '{}' ({:?})",
                        p.text(),
                        p.kind(),
                        code.text(),
                        code.kind()
                    )
                }
            }
            Some(SyntaxElement::Node(p)) => {
                // Not sure if this is actually reachable.
                fail_match!(
                    "Pattern wanted {:?}, but code had token '{}' ({:?})",
                    p,
                    code.text(),
                    code.kind()
                );
            }
            None => {
                fail_match!("Pattern exhausted, while code remains: `{}`", code.text());
            }
        }
        Ok(())
    }

    #[allow(clippy::only_used_in_recursion)]
    fn check_constraint(
        &self,
        constraint: &Constraint,
        code: &SyntaxNode,
    ) -> Result<(), MatchFailed> {
        match constraint {
            Constraint::Kind(kind) => {
                kind.matches(code)?;
            }
            Constraint::Not(sub) => {
                if self.check_constraint(sub, code).is_ok() {
                    fail_match!("Constraint {:?} failed for '{}'", constraint, code.text());
                }
            }
        }
        Ok(())
    }

    /// Paths are matched based on whether they refer to the same thing, even if they're written
    /// differently.
    fn attempt_match_path(
        &self,
        phase: &mut Phase<'_>,
        pattern: &SyntaxNode,
        code: &SyntaxNode,
    ) -> Result<(), MatchFailed> {
        if let Some(pattern_resolved) = self.rule.pattern.resolved_paths.get(pattern) {
            let pattern_path = ast::Path::cast(pattern.clone()).unwrap();
            let code_path = ast::Path::cast(code.clone()).unwrap();
            if let (Some(pattern_segment), Some(code_segment)) =
                (pattern_path.segment(), code_path.segment())
            {
                // Match everything within the segment except for the name-ref, which is handled
                // separately via comparing what the path resolves to below.
                self.attempt_match_opt(
                    phase,
                    pattern_segment.generic_arg_list(),
                    code_segment.generic_arg_list(),
                )?;
                self.attempt_match_opt(
                    phase,
                    pattern_segment.parenthesized_arg_list(),
                    code_segment.parenthesized_arg_list(),
                )?;
            }
            if matches!(phase, Phase::Second(_)) {
                let resolution = self
                    .sema
                    .resolve_path(&code_path)
                    .ok_or_else(|| match_error!("Failed to resolve path `{}`", code.text()))?;
                if pattern_resolved.resolution != resolution {
                    fail_match!("Pattern had path `{}` code had `{}`", pattern.text(), code.text());
                }
            }
        } else {
            return self.attempt_match_node_children(phase, pattern, code);
        }
        Ok(())
    }

    fn attempt_match_opt<T: AstNode>(
        &self,
        phase: &mut Phase<'_>,
        pattern: Option<T>,
        code: Option<T>,
    ) -> Result<(), MatchFailed> {
        match (pattern, code) {
            (Some(p), Some(c)) => self.attempt_match_node(phase, p.syntax(), c.syntax()),
            (None, None) => Ok(()),
            (Some(p), None) => fail_match!("Pattern `{}` had nothing to match", p.syntax().text()),
            (None, Some(c)) => {
                fail_match!("Nothing in pattern to match code `{}`", c.syntax().text())
            }
        }
    }

    /// We want to allow the records to match in any order, so we have special matching logic for
    /// them.
    fn attempt_match_record_field_list(
        &self,
        phase: &mut Phase<'_>,
        pattern: &SyntaxNode,
        code: &SyntaxNode,
    ) -> Result<(), MatchFailed> {
        // Build a map keyed by field name.
        let mut fields_by_name: FxHashMap<SmolStr, SyntaxNode> = FxHashMap::default();
        for child in code.children() {
            if let Some(record) = ast::RecordExprField::cast(child.clone()) {
                if let Some(name) = record.field_name() {
                    fields_by_name.insert(name.text().into(), child.clone());
                }
            }
        }
        for p in pattern.children_with_tokens() {
            if let SyntaxElement::Node(p) = p {
                if let Some(name_element) = p.first_child_or_token() {
                    if self.get_placeholder(&name_element).is_some() {
                        // If the pattern is using placeholders for field names then order
                        // independence doesn't make sense. Fall back to regular ordered
                        // matching.
                        return self.attempt_match_node_children(phase, pattern, code);
                    }
                    if let Some(ident) = only_ident(name_element) {
                        let code_record = fields_by_name.remove(ident.text()).ok_or_else(|| {
                            match_error!(
                                "Placeholder has record field '{}', but code doesn't",
                                ident
                            )
                        })?;
                        self.attempt_match_node(phase, &p, &code_record)?;
                    }
                }
            }
        }
        if let Some(unmatched_fields) = fields_by_name.keys().next() {
            fail_match!(
                "{} field(s) of a record literal failed to match, starting with {}",
                fields_by_name.len(),
                unmatched_fields
            );
        }
        Ok(())
    }

    /// Outside of token trees, a placeholder can only match a single AST node, whereas in a token
    /// tree it can match a sequence of tokens. Note, that this code will only be used when the
    /// pattern matches the macro invocation. For matches within the macro call, we'll already have
    /// expanded the macro.
    fn attempt_match_token_tree(
        &self,
        phase: &mut Phase<'_>,
        pattern: &SyntaxNode,
        code: &syntax::SyntaxNode,
    ) -> Result<(), MatchFailed> {
        let mut pattern = PatternIterator::new(pattern).peekable();
        let mut children = code.children_with_tokens();
        while let Some(child) = children.next() {
            if let Some(placeholder) = pattern.peek().and_then(|p| self.get_placeholder(p)) {
                pattern.next();
                let next_pattern_token = pattern
                    .peek()
                    .and_then(|p| match p {
                        SyntaxElement::Token(t) => Some(t.clone()),
                        SyntaxElement::Node(n) => n.first_token(),
                    })
                    .map(|p| p.text().to_owned());
                let first_matched_token = child.clone();
                let mut last_matched_token = child;
                // Read code tokens util we reach one equal to the next token from our pattern
                // or we reach the end of the token tree.
                for next in &mut children {
                    match &next {
                        SyntaxElement::Token(t) => {
                            if Some(t.to_string()) == next_pattern_token {
                                pattern.next();
                                break;
                            }
                        }
                        SyntaxElement::Node(n) => {
                            if let Some(first_token) = n.first_token() {
                                if Some(first_token.text()) == next_pattern_token.as_deref() {
                                    if let Some(SyntaxElement::Node(p)) = pattern.next() {
                                        // We have a subtree that starts with the next token in our pattern.
                                        self.attempt_match_token_tree(phase, &p, n)?;
                                        break;
                                    }
                                }
                            }
                        }
                    };
                    last_matched_token = next;
                }
                if let Phase::Second(match_out) = phase {
                    match_out.placeholder_values.insert(
                        placeholder.ident.clone(),
                        PlaceholderMatch::from_range(FileRange {
                            file_id: self
                                .sema
                                .original_range_opt(code)
                                .ok_or(MatchFailed {
                                    reason: Some("def site definition".to_owned()),
                                })?
                                .file_id,
                            range: first_matched_token
                                .text_range()
                                .cover(last_matched_token.text_range()),
                        }),
                    );
                }
                continue;
            }
            // Match literal (non-placeholder) tokens.
            match child {
                SyntaxElement::Token(token) => {
                    self.attempt_match_token(phase, &mut pattern, &token)?;
                }
                SyntaxElement::Node(node) => match pattern.next() {
                    Some(SyntaxElement::Node(p)) => {
                        self.attempt_match_token_tree(phase, &p, &node)?;
                    }
                    Some(SyntaxElement::Token(p)) => fail_match!(
                        "Pattern has token '{}', code has subtree '{}'",
                        p.text(),
                        node.text()
                    ),
                    None => fail_match!("Pattern has nothing, code has '{}'", node.text()),
                },
            }
        }
        if let Some(p) = pattern.next() {
            fail_match!("Reached end of token tree in code, but pattern still has {:?}", p);
        }
        Ok(())
    }

    fn attempt_match_ufcs_to_method_call(
        &self,
        phase: &mut Phase<'_>,
        pattern_ufcs: &UfcsCallInfo,
        code: &ast::MethodCallExpr,
    ) -> Result<(), MatchFailed> {
        use ast::HasArgList;
        let code_resolved_function = self
            .sema
            .resolve_method_call(code)
            .ok_or_else(|| match_error!("Failed to resolve method call"))?;
        if pattern_ufcs.function != code_resolved_function {
            fail_match!("Method call resolved to a different function");
        }
        // Check arguments.
        let mut pattern_args = pattern_ufcs
            .call_expr
            .arg_list()
            .ok_or_else(|| match_error!("Pattern function call has no args"))?
            .args();
        // If the function we're calling takes a self parameter, then we store additional
        // information on the placeholder match about autoderef and autoref. This allows us to use
        // the placeholder in a context where autoderef and autoref don't apply.
        if code_resolved_function.self_param(self.sema.db).is_some() {
            if let (Some(pattern_type), Some(expr)) =
                (&pattern_ufcs.qualifier_type, &code.receiver())
            {
                let deref_count = self.check_expr_type(pattern_type, expr)?;
                let pattern_receiver = pattern_args.next();
                self.attempt_match_opt(phase, pattern_receiver.clone(), code.receiver())?;
                if let Phase::Second(match_out) = phase {
                    if let Some(placeholder_value) = pattern_receiver
                        .and_then(|n| self.get_placeholder_for_node(n.syntax()))
                        .and_then(|placeholder| {
                            match_out.placeholder_values.get_mut(&placeholder.ident)
                        })
                    {
                        placeholder_value.autoderef_count = deref_count;
                        placeholder_value.autoref_kind = self
                            .sema
                            .resolve_method_call_as_callable(code)
                            .and_then(|callable| {
                                let (self_param, _) = callable.receiver_param(self.sema.db)?;
                                Some(self.sema.source(self_param)?.value.kind())
                            })
                            .unwrap_or(ast::SelfParamKind::Owned);
                    }
                }
            }
        } else {
            self.attempt_match_opt(phase, pattern_args.next(), code.receiver())?;
        }
        let mut code_args =
            code.arg_list().ok_or_else(|| match_error!("Code method call has no args"))?.args();
        loop {
            match (pattern_args.next(), code_args.next()) {
                (None, None) => return Ok(()),
                (p, c) => self.attempt_match_opt(phase, p, c)?,
            }
        }
    }

    fn attempt_match_ufcs_to_ufcs(
        &self,
        phase: &mut Phase<'_>,
        pattern_ufcs: &UfcsCallInfo,
        code: &ast::CallExpr,
    ) -> Result<(), MatchFailed> {
        use ast::HasArgList;
        // Check that the first argument is the expected type.
        if let (Some(pattern_type), Some(expr)) = (
            &pattern_ufcs.qualifier_type,
            &code.arg_list().and_then(|code_args| code_args.args().next()),
        ) {
            self.check_expr_type(pattern_type, expr)?;
        }
        self.attempt_match_node_children(phase, pattern_ufcs.call_expr.syntax(), code.syntax())
    }

    /// Verifies that `expr` matches `pattern_type`, possibly after dereferencing some number of
    /// times. Returns the number of times it needed to be dereferenced.
    fn check_expr_type(
        &self,
        pattern_type: &hir::Type,
        expr: &ast::Expr,
    ) -> Result<usize, MatchFailed> {
        use hir::HirDisplay;
        let code_type = self
            .sema
            .type_of_expr(expr)
            .ok_or_else(|| {
                match_error!("Failed to get receiver type for `{}`", expr.syntax().text())
            })?
            .original;
        let edition = self
            .sema
            .scope(expr.syntax())
            .map(|it| it.krate().edition(self.sema.db))
            .unwrap_or(Edition::CURRENT);
        // Temporary needed to make the borrow checker happy.
        let res = code_type
            .autoderef(self.sema.db)
            .enumerate()
            .find(|(_, deref_code_type)| pattern_type == deref_code_type)
            .map(|(count, _)| count)
            .ok_or_else(|| {
                match_error!(
                    "Pattern type `{}` didn't match code type `{}`",
                    pattern_type.display(self.sema.db, edition),
                    code_type.display(self.sema.db, edition)
                )
            });
        res
    }

    fn get_placeholder_for_node(&self, node: &SyntaxNode) -> Option<&Placeholder> {
        self.get_placeholder(&SyntaxElement::Node(node.clone()))
    }

    fn get_placeholder(&self, element: &SyntaxElement) -> Option<&Placeholder> {
        only_ident(element.clone()).and_then(|ident| self.rule.get_placeholder(&ident))
    }
}

impl Match {
    fn render_template_paths(
        &mut self,
        template: &ResolvedPattern,
        sema: &Semantics<'_, ide_db::RootDatabase>,
    ) -> Result<(), MatchFailed> {
        let module = sema
            .scope(&self.matched_node)
            .ok_or_else(|| match_error!("Matched node isn't in a module"))?
            .module();
        for (path, resolved_path) in &template.resolved_paths {
            if let hir::PathResolution::Def(module_def) = resolved_path.resolution {
                let cfg = ImportPathConfig {
                    prefer_no_std: false,
                    prefer_prelude: true,
                    prefer_absolute: false,
                };
                let mod_path = module.find_path(sema.db, module_def, cfg).ok_or_else(|| {
                    match_error!("Failed to render template path `{}` at match location")
                })?;
                self.rendered_template_paths.insert(path.clone(), mod_path);
            }
        }
        Ok(())
    }
}

impl Phase<'_> {
    fn next_non_trivial(&mut self, code_it: &mut SyntaxElementChildren) -> Option<SyntaxElement> {
        loop {
            let c = code_it.next();
            if let Some(SyntaxElement::Token(t)) = &c {
                self.record_ignored_comments(t);
                if t.kind().is_trivia() {
                    continue;
                }
            }
            return c;
        }
    }

    fn record_ignored_comments(&mut self, token: &SyntaxToken) {
        if token.kind() == SyntaxKind::COMMENT {
            if let Phase::Second(match_out) = self {
                if let Some(comment) = ast::Comment::cast(token.clone()) {
                    match_out.ignored_comments.push(comment);
                }
            }
        }
    }
}

fn is_closing_token(kind: SyntaxKind) -> bool {
    kind == SyntaxKind::R_PAREN || kind == SyntaxKind::R_CURLY || kind == SyntaxKind::R_BRACK
}

pub(crate) fn record_match_fails_reasons_scope<F, T>(debug_active: bool, f: F) -> T
where
    F: Fn() -> T,
{
    RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(debug_active));
    let res = f();
    RECORDING_MATCH_FAIL_REASONS.with(|c| c.set(false));
    res
}

// For performance reasons, we don't want to record the reason why every match fails, only the bit
// of code that the user indicated they thought would match. We use a thread local to indicate when
// we are trying to match that bit of code. This saves us having to pass a boolean into all the bits
// of code that can make the decision to not match.
thread_local! {
    pub static RECORDING_MATCH_FAIL_REASONS: Cell<bool> = const { Cell::new(false) };
}

fn recording_match_fail_reasons() -> bool {
    RECORDING_MATCH_FAIL_REASONS.with(|c| c.get())
}

impl PlaceholderMatch {
    fn from_range(range: FileRange) -> Self {
        Self {
            range,
            inner_matches: SsrMatches::default(),
            autoderef_count: 0,
            autoref_kind: ast::SelfParamKind::Owned,
        }
    }
}

impl NodeKind {
    fn matches(&self, node: &SyntaxNode) -> Result<(), MatchFailed> {
        let ok = match self {
            Self::Literal => {
                cov_mark::hit!(literal_constraint);
                ast::Literal::can_cast(node.kind())
            }
        };
        if !ok {
            fail_match!("Code '{}' isn't of kind {:?}", node.text(), self);
        }
        Ok(())
    }
}

// If `node` contains nothing but an ident then return it, otherwise return None.
fn only_ident(element: SyntaxElement) -> Option<SyntaxToken> {
    match element {
        SyntaxElement::Token(t) => {
            if t.kind() == SyntaxKind::IDENT {
                return Some(t);
            }
        }
        SyntaxElement::Node(n) => {
            let mut children = n.children_with_tokens();
            if let (Some(only_child), None) = (children.next(), children.next()) {
                return only_ident(only_child);
            }
        }
    }
    None
}

struct PatternIterator {
    iter: SyntaxElementChildren,
}

impl Iterator for PatternIterator {
    type Item = SyntaxElement;

    fn next(&mut self) -> Option<SyntaxElement> {
        self.iter.find(|element| !element.kind().is_trivia())
    }
}

impl PatternIterator {
    fn new(parent: &SyntaxNode) -> Self {
        Self { iter: parent.children_with_tokens() }
    }
}

#[cfg(test)]
mod tests {
    use crate::{MatchFinder, SsrRule};

    #[test]
    fn parse_match_replace() {
        let rule: SsrRule = "foo($x) ==>> bar($x)".parse().unwrap();
        let input = "fn foo() {} fn bar() {} fn main() { foo(1+2); }";

        let (db, position, selections) = crate::tests::single_file(input);
        let mut match_finder = MatchFinder::in_context(
            &db,
            position.into(),
            selections.into_iter().map(Into::into).collect(),
        )
        .unwrap();
        match_finder.add_rule(rule).unwrap();
        let matches = match_finder.matches();
        assert_eq!(matches.matches.len(), 1);
        assert_eq!(matches.matches[0].matched_node.text(), "foo(1+2)");
        assert_eq!(matches.matches[0].placeholder_values.len(), 1);

        let edits = match_finder.edits();
        assert_eq!(edits.len(), 1);
        let edit = &edits[&position.file_id.into()];
        let mut after = input.to_owned();
        edit.apply(&mut after);
        assert_eq!(after, "fn foo() {} fn bar() {} fn main() { bar(1+2); }");
    }
}