parser/
grammar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
//! This is the actual "grammar" of the Rust language.
//!
//! Each function in this module and its children corresponds
//! to a production of the formal grammar. Submodules roughly
//! correspond to different *areas* of the grammar. By convention,
//! each submodule starts with `use super::*` import and exports
//! "public" productions via `pub(super)`.
//!
//! See docs for [`Parser`](super::parser::Parser) to learn about API,
//! available to the grammar, and see docs for [`Event`](super::event::Event)
//! to learn how this actually manages to produce parse trees.
//!
//! Code in this module also contains inline tests, which start with
//! `// test name-of-the-test` comment and look like this:
//!
//! ```text
//! // test function_with_zero_parameters
//! // fn foo() {}
//! ```
//!
//! After adding a new inline-test, run `cargo test -p xtask` to
//! extract it as a standalone text-fixture into
//! `crates/syntax/test_data/parser/`, and run `cargo test` once to
//! create the "gold" value.
//!
//! Coding convention: rules like `where_clause` always produce either a
//! node or an error, rules like `opt_where_clause` may produce nothing.
//! Non-opt rules typically start with `assert!(p.at(FIRST_TOKEN))`, the
//! caller is responsible for branching on the first token.

mod attributes;
mod expressions;
mod generic_args;
mod generic_params;
mod items;
mod params;
mod paths;
mod patterns;
mod types;

use crate::{
    parser::{CompletedMarker, Marker, Parser},
    SyntaxKind::{self, *},
    TokenSet, T,
};

pub(crate) mod entry {
    use super::*;

    pub(crate) mod prefix {
        use super::*;

        pub(crate) fn vis(p: &mut Parser<'_>) {
            opt_visibility(p, false);
        }

        pub(crate) fn block(p: &mut Parser<'_>) {
            expressions::block_expr(p);
        }

        pub(crate) fn stmt(p: &mut Parser<'_>) {
            expressions::stmt(p, expressions::Semicolon::Forbidden);
        }

        pub(crate) fn pat(p: &mut Parser<'_>) {
            patterns::pattern_single(p);
        }

        pub(crate) fn pat_top(p: &mut Parser<'_>) {
            patterns::pattern(p);
        }

        pub(crate) fn ty(p: &mut Parser<'_>) {
            types::type_(p);
        }
        pub(crate) fn expr(p: &mut Parser<'_>) {
            expressions::expr(p);
        }
        pub(crate) fn path(p: &mut Parser<'_>) {
            paths::type_path(p);
        }
        pub(crate) fn item(p: &mut Parser<'_>) {
            // We can set `is_in_extern=true`, because it only allows `safe fn`, and there is no ambiguity here.
            items::item_or_macro(p, true, true);
        }
        // Parse a meta item , which excluded [], e.g : #[ MetaItem ]
        pub(crate) fn meta_item(p: &mut Parser<'_>) {
            attributes::meta(p);
        }
    }

    pub(crate) mod top {
        use super::*;

        pub(crate) fn source_file(p: &mut Parser<'_>) {
            let m = p.start();
            p.eat(SHEBANG);
            items::mod_contents(p, false);
            m.complete(p, SOURCE_FILE);
        }

        pub(crate) fn macro_stmts(p: &mut Parser<'_>) {
            let m = p.start();

            while !p.at(EOF) {
                expressions::stmt(p, expressions::Semicolon::Optional);
            }

            m.complete(p, MACRO_STMTS);
        }

        pub(crate) fn macro_items(p: &mut Parser<'_>) {
            let m = p.start();
            items::mod_contents(p, false);
            m.complete(p, MACRO_ITEMS);
        }

        pub(crate) fn pattern(p: &mut Parser<'_>) {
            let m = p.start();
            patterns::pattern(p);
            if p.at(EOF) {
                m.abandon(p);
                return;
            }
            while !p.at(EOF) {
                p.bump_any();
            }
            m.complete(p, ERROR);
        }

        pub(crate) fn type_(p: &mut Parser<'_>) {
            let m = p.start();
            types::type_(p);
            if p.at(EOF) {
                m.abandon(p);
                return;
            }
            while !p.at(EOF) {
                p.bump_any();
            }
            m.complete(p, ERROR);
        }

        pub(crate) fn expr(p: &mut Parser<'_>) {
            let m = p.start();
            expressions::expr(p);
            if p.at(EOF) {
                m.abandon(p);
                return;
            }
            while !p.at(EOF) {
                p.bump_any();
            }
            m.complete(p, ERROR);
        }

        pub(crate) fn meta_item(p: &mut Parser<'_>) {
            let m = p.start();
            attributes::meta(p);
            if p.at(EOF) {
                m.abandon(p);
                return;
            }
            while !p.at(EOF) {
                p.bump_any();
            }
            m.complete(p, ERROR);
        }
    }
}

pub(crate) fn reparser(
    node: SyntaxKind,
    first_child: Option<SyntaxKind>,
    parent: Option<SyntaxKind>,
) -> Option<fn(&mut Parser<'_>)> {
    let res = match node {
        BLOCK_EXPR => expressions::block_expr,
        RECORD_FIELD_LIST => items::record_field_list,
        RECORD_EXPR_FIELD_LIST => items::record_expr_field_list,
        VARIANT_LIST => items::variant_list,
        MATCH_ARM_LIST => items::match_arm_list,
        USE_TREE_LIST => items::use_tree_list,
        EXTERN_ITEM_LIST => items::extern_item_list,
        TOKEN_TREE if first_child? == T!['{'] => items::token_tree,
        ASSOC_ITEM_LIST => match parent? {
            IMPL | TRAIT => items::assoc_item_list,
            _ => return None,
        },
        ITEM_LIST => items::item_list,
        _ => return None,
    };
    Some(res)
}

#[derive(Clone, Copy, PartialEq, Eq)]
enum BlockLike {
    Block,
    NotBlock,
}

impl BlockLike {
    fn is_block(self) -> bool {
        self == BlockLike::Block
    }

    fn is_blocklike(kind: SyntaxKind) -> bool {
        matches!(kind, BLOCK_EXPR | IF_EXPR | WHILE_EXPR | FOR_EXPR | LOOP_EXPR | MATCH_EXPR)
    }
}

const VISIBILITY_FIRST: TokenSet = TokenSet::new(&[T![pub]]);

fn opt_visibility(p: &mut Parser<'_>, in_tuple_field: bool) -> bool {
    if !p.at(T![pub]) {
        return false;
    }

    let m = p.start();
    p.bump(T![pub]);
    if p.at(T!['(']) {
        match p.nth(1) {
            // test crate_visibility
            // pub(crate) struct S;
            // pub(self) struct S;
            // pub(super) struct S;

            // test_err crate_visibility_empty_recover
            // pub() struct S;

            // test pub_parens_typepath
            // struct B(pub (super::A));
            // struct B(pub (crate::A,));
            T![crate] | T![self] | T![super] | T![ident] | T![')'] if p.nth(2) != T![:] => {
                // If we are in a tuple struct, then the parens following `pub`
                // might be an tuple field, not part of the visibility. So in that
                // case we don't want to consume an identifier.

                // test pub_tuple_field
                // struct MyStruct(pub (u32, u32));
                // struct MyStruct(pub (u32));
                // struct MyStruct(pub ());
                if !(in_tuple_field && matches!(p.nth(1), T![ident] | T![')'])) {
                    p.bump(T!['(']);
                    paths::vis_path(p);
                    p.expect(T![')']);
                }
            }
            // test crate_visibility_in
            // pub(in super::A) struct S;
            // pub(in crate) struct S;
            T![in] => {
                p.bump(T!['(']);
                p.bump(T![in]);
                paths::vis_path(p);
                p.expect(T![')']);
            }
            _ => {}
        }
    }
    m.complete(p, VISIBILITY);
    true
}

fn opt_rename(p: &mut Parser<'_>) {
    if p.at(T![as]) {
        let m = p.start();
        p.bump(T![as]);
        if !p.eat(T![_]) {
            name(p);
        }
        m.complete(p, RENAME);
    }
}

fn abi(p: &mut Parser<'_>) {
    assert!(p.at(T![extern]));
    let abi = p.start();
    p.bump(T![extern]);
    p.eat(STRING);
    abi.complete(p, ABI);
}

fn opt_ret_type(p: &mut Parser<'_>) -> bool {
    if p.at(T![->]) {
        let m = p.start();
        p.bump(T![->]);
        types::type_no_bounds(p);
        m.complete(p, RET_TYPE);
        true
    } else {
        false
    }
}

fn name_r(p: &mut Parser<'_>, recovery: TokenSet) {
    if p.at(IDENT) {
        let m = p.start();
        p.bump(IDENT);
        m.complete(p, NAME);
    } else {
        p.err_recover("expected a name", recovery);
    }
}

fn name(p: &mut Parser<'_>) {
    name_r(p, TokenSet::EMPTY);
}

fn name_ref_or_self(p: &mut Parser<'_>) {
    if matches!(p.current(), T![ident] | T![self]) {
        let m = p.start();
        p.bump_any();
        m.complete(p, NAME_REF);
    } else {
        p.err_and_bump("expected identifier or `self`");
    }
}

fn name_ref_or_upper_self(p: &mut Parser<'_>) {
    if matches!(p.current(), T![ident] | T![Self]) {
        let m = p.start();
        p.bump_any();
        m.complete(p, NAME_REF);
    } else {
        p.err_and_bump("expected identifier or `Self`");
    }
}

const PATH_NAME_REF_KINDS: TokenSet =
    TokenSet::new(&[IDENT, T![self], T![super], T![crate], T![Self]]);

fn name_ref_mod_path(p: &mut Parser<'_>) {
    if p.at_ts(PATH_NAME_REF_KINDS) {
        let m = p.start();
        p.bump_any();
        m.complete(p, NAME_REF);
    } else {
        p.err_and_bump("expected identifier, `self`, `super`, `crate`, or `Self`");
    }
}

const PATH_NAME_REF_OR_INDEX_KINDS: TokenSet =
    PATH_NAME_REF_KINDS.union(TokenSet::new(&[INT_NUMBER]));

fn name_ref_mod_path_or_index(p: &mut Parser<'_>) {
    if p.at_ts(PATH_NAME_REF_OR_INDEX_KINDS) {
        let m = p.start();
        p.bump_any();
        m.complete(p, NAME_REF);
    } else {
        p.err_and_bump("expected integer, identifier, `self`, `super`, `crate`, or `Self`");
    }
}

fn name_ref_or_index(p: &mut Parser<'_>) {
    assert!(p.at(IDENT) || p.at(INT_NUMBER));
    let m = p.start();
    p.bump_any();
    m.complete(p, NAME_REF);
}

fn lifetime(p: &mut Parser<'_>) {
    assert!(p.at(LIFETIME_IDENT));
    let m = p.start();
    p.bump(LIFETIME_IDENT);
    m.complete(p, LIFETIME);
}

fn error_block(p: &mut Parser<'_>, message: &str) {
    assert!(p.at(T!['{']));
    let m = p.start();
    p.error(message);
    p.bump(T!['{']);
    expressions::expr_block_contents(p);
    p.eat(T!['}']);
    m.complete(p, ERROR);
}

// test_err top_level_let
// let ref foo: fn() = 1 + 3;
fn error_let_stmt(p: &mut Parser<'_>, message: &str) {
    assert!(p.at(T![let]));
    let m = p.start();
    p.error(message);
    expressions::let_stmt(p, expressions::Semicolon::Optional);
    m.complete(p, ERROR);
}

/// The `parser` passed this is required to at least consume one token if it returns `true`.
/// If the `parser` returns false, parsing will stop.
fn delimited(
    p: &mut Parser<'_>,
    bra: SyntaxKind,
    ket: SyntaxKind,
    delim: SyntaxKind,
    unexpected_delim_message: impl Fn() -> String,
    first_set: TokenSet,
    mut parser: impl FnMut(&mut Parser<'_>) -> bool,
) {
    p.bump(bra);
    while !p.at(ket) && !p.at(EOF) {
        if p.at(delim) {
            // Recover if an argument is missing and only got a delimiter,
            // e.g. `(a, , b)`.

            // Wrap the erroneous delimiter in an error node so that fixup logic gets rid of it.
            // FIXME: Ideally this should be handled in fixup in a structured way, but our list
            // nodes currently have no concept of a missing node between two delimiters.
            // So doing it this way is easier.
            let m = p.start();
            p.error(unexpected_delim_message());
            p.bump(delim);
            m.complete(p, ERROR);
            continue;
        }
        if !parser(p) {
            break;
        }
        if !p.eat(delim) {
            if p.at_ts(first_set) {
                p.error(format!("expected {delim:?}"));
            } else {
                break;
            }
        }
    }
    p.expect(ket);
}