parser/grammar.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
//! This is the actual "grammar" of the Rust language.
//!
//! Each function in this module and its children corresponds
//! to a production of the formal grammar. Submodules roughly
//! correspond to different *areas* of the grammar. By convention,
//! each submodule starts with `use super::*` import and exports
//! "public" productions via `pub(super)`.
//!
//! See docs for [`Parser`](super::parser::Parser) to learn about API,
//! available to the grammar, and see docs for [`Event`](super::event::Event)
//! to learn how this actually manages to produce parse trees.
//!
//! Code in this module also contains inline tests, which start with
//! `// test name-of-the-test` comment and look like this:
//!
//! ```text
//! // test function_with_zero_parameters
//! // fn foo() {}
//! ```
//!
//! After adding a new inline-test, run `cargo test -p xtask` to
//! extract it as a standalone text-fixture into
//! `crates/syntax/test_data/parser/`, and run `cargo test` once to
//! create the "gold" value.
//!
//! Coding convention: rules like `where_clause` always produce either a
//! node or an error, rules like `opt_where_clause` may produce nothing.
//! Non-opt rules typically start with `assert!(p.at(FIRST_TOKEN))`, the
//! caller is responsible for branching on the first token.
mod attributes;
mod expressions;
mod generic_args;
mod generic_params;
mod items;
mod params;
mod paths;
mod patterns;
mod types;
use crate::{
parser::{CompletedMarker, Marker, Parser},
SyntaxKind::{self, *},
TokenSet, T,
};
pub(crate) mod entry {
use super::*;
pub(crate) mod prefix {
use super::*;
pub(crate) fn vis(p: &mut Parser<'_>) {
opt_visibility(p, false);
}
pub(crate) fn block(p: &mut Parser<'_>) {
expressions::block_expr(p);
}
pub(crate) fn stmt(p: &mut Parser<'_>) {
expressions::stmt(p, expressions::Semicolon::Forbidden);
}
pub(crate) fn pat(p: &mut Parser<'_>) {
patterns::pattern_single(p);
}
pub(crate) fn pat_top(p: &mut Parser<'_>) {
patterns::pattern(p);
}
pub(crate) fn ty(p: &mut Parser<'_>) {
types::type_(p);
}
pub(crate) fn expr(p: &mut Parser<'_>) {
expressions::expr(p);
}
pub(crate) fn path(p: &mut Parser<'_>) {
paths::type_path(p);
}
pub(crate) fn item(p: &mut Parser<'_>) {
// We can set `is_in_extern=true`, because it only allows `safe fn`, and there is no ambiguity here.
items::item_or_macro(p, true, true);
}
// Parse a meta item , which excluded [], e.g : #[ MetaItem ]
pub(crate) fn meta_item(p: &mut Parser<'_>) {
attributes::meta(p);
}
}
pub(crate) mod top {
use super::*;
pub(crate) fn source_file(p: &mut Parser<'_>) {
let m = p.start();
p.eat(SHEBANG);
items::mod_contents(p, false);
m.complete(p, SOURCE_FILE);
}
pub(crate) fn macro_stmts(p: &mut Parser<'_>) {
let m = p.start();
while !p.at(EOF) {
expressions::stmt(p, expressions::Semicolon::Optional);
}
m.complete(p, MACRO_STMTS);
}
pub(crate) fn macro_items(p: &mut Parser<'_>) {
let m = p.start();
items::mod_contents(p, false);
m.complete(p, MACRO_ITEMS);
}
pub(crate) fn pattern(p: &mut Parser<'_>) {
let m = p.start();
patterns::pattern(p);
if p.at(EOF) {
m.abandon(p);
return;
}
while !p.at(EOF) {
p.bump_any();
}
m.complete(p, ERROR);
}
pub(crate) fn type_(p: &mut Parser<'_>) {
let m = p.start();
types::type_(p);
if p.at(EOF) {
m.abandon(p);
return;
}
while !p.at(EOF) {
p.bump_any();
}
m.complete(p, ERROR);
}
pub(crate) fn expr(p: &mut Parser<'_>) {
let m = p.start();
expressions::expr(p);
if p.at(EOF) {
m.abandon(p);
return;
}
while !p.at(EOF) {
p.bump_any();
}
m.complete(p, ERROR);
}
pub(crate) fn meta_item(p: &mut Parser<'_>) {
let m = p.start();
attributes::meta(p);
if p.at(EOF) {
m.abandon(p);
return;
}
while !p.at(EOF) {
p.bump_any();
}
m.complete(p, ERROR);
}
}
}
pub(crate) fn reparser(
node: SyntaxKind,
first_child: Option<SyntaxKind>,
parent: Option<SyntaxKind>,
) -> Option<fn(&mut Parser<'_>)> {
let res = match node {
BLOCK_EXPR => expressions::block_expr,
RECORD_FIELD_LIST => items::record_field_list,
RECORD_EXPR_FIELD_LIST => items::record_expr_field_list,
VARIANT_LIST => items::variant_list,
MATCH_ARM_LIST => items::match_arm_list,
USE_TREE_LIST => items::use_tree_list,
EXTERN_ITEM_LIST => items::extern_item_list,
TOKEN_TREE if first_child? == T!['{'] => items::token_tree,
ASSOC_ITEM_LIST => match parent? {
IMPL | TRAIT => items::assoc_item_list,
_ => return None,
},
ITEM_LIST => items::item_list,
_ => return None,
};
Some(res)
}
#[derive(Clone, Copy, PartialEq, Eq)]
enum BlockLike {
Block,
NotBlock,
}
impl BlockLike {
fn is_block(self) -> bool {
self == BlockLike::Block
}
fn is_blocklike(kind: SyntaxKind) -> bool {
matches!(kind, BLOCK_EXPR | IF_EXPR | WHILE_EXPR | FOR_EXPR | LOOP_EXPR | MATCH_EXPR)
}
}
const VISIBILITY_FIRST: TokenSet = TokenSet::new(&[T![pub]]);
fn opt_visibility(p: &mut Parser<'_>, in_tuple_field: bool) -> bool {
if !p.at(T![pub]) {
return false;
}
let m = p.start();
p.bump(T![pub]);
if p.at(T!['(']) {
match p.nth(1) {
// test crate_visibility
// pub(crate) struct S;
// pub(self) struct S;
// pub(super) struct S;
// test_err crate_visibility_empty_recover
// pub() struct S;
// test pub_parens_typepath
// struct B(pub (super::A));
// struct B(pub (crate::A,));
T![crate] | T![self] | T![super] | T![ident] | T![')'] if p.nth(2) != T![:] => {
// If we are in a tuple struct, then the parens following `pub`
// might be an tuple field, not part of the visibility. So in that
// case we don't want to consume an identifier.
// test pub_tuple_field
// struct MyStruct(pub (u32, u32));
// struct MyStruct(pub (u32));
// struct MyStruct(pub ());
if !(in_tuple_field && matches!(p.nth(1), T![ident] | T![')'])) {
p.bump(T!['(']);
paths::vis_path(p);
p.expect(T![')']);
}
}
// test crate_visibility_in
// pub(in super::A) struct S;
// pub(in crate) struct S;
T![in] => {
p.bump(T!['(']);
p.bump(T![in]);
paths::vis_path(p);
p.expect(T![')']);
}
_ => {}
}
}
m.complete(p, VISIBILITY);
true
}
fn opt_rename(p: &mut Parser<'_>) {
if p.at(T![as]) {
let m = p.start();
p.bump(T![as]);
if !p.eat(T![_]) {
name(p);
}
m.complete(p, RENAME);
}
}
fn abi(p: &mut Parser<'_>) {
assert!(p.at(T![extern]));
let abi = p.start();
p.bump(T![extern]);
p.eat(STRING);
abi.complete(p, ABI);
}
fn opt_ret_type(p: &mut Parser<'_>) -> bool {
if p.at(T![->]) {
let m = p.start();
p.bump(T![->]);
types::type_no_bounds(p);
m.complete(p, RET_TYPE);
true
} else {
false
}
}
fn name_r(p: &mut Parser<'_>, recovery: TokenSet) {
if p.at(IDENT) {
let m = p.start();
p.bump(IDENT);
m.complete(p, NAME);
} else {
p.err_recover("expected a name", recovery);
}
}
fn name(p: &mut Parser<'_>) {
name_r(p, TokenSet::EMPTY);
}
fn name_ref_or_self(p: &mut Parser<'_>) {
if matches!(p.current(), T![ident] | T![self]) {
let m = p.start();
p.bump_any();
m.complete(p, NAME_REF);
} else {
p.err_and_bump("expected identifier or `self`");
}
}
fn name_ref_or_upper_self(p: &mut Parser<'_>) {
if matches!(p.current(), T![ident] | T![Self]) {
let m = p.start();
p.bump_any();
m.complete(p, NAME_REF);
} else {
p.err_and_bump("expected identifier or `Self`");
}
}
const PATH_NAME_REF_KINDS: TokenSet =
TokenSet::new(&[IDENT, T![self], T![super], T![crate], T![Self]]);
fn name_ref_mod_path(p: &mut Parser<'_>) {
if p.at_ts(PATH_NAME_REF_KINDS) {
let m = p.start();
p.bump_any();
m.complete(p, NAME_REF);
} else {
p.err_and_bump("expected identifier, `self`, `super`, `crate`, or `Self`");
}
}
const PATH_NAME_REF_OR_INDEX_KINDS: TokenSet =
PATH_NAME_REF_KINDS.union(TokenSet::new(&[INT_NUMBER]));
fn name_ref_mod_path_or_index(p: &mut Parser<'_>) {
if p.at_ts(PATH_NAME_REF_OR_INDEX_KINDS) {
let m = p.start();
p.bump_any();
m.complete(p, NAME_REF);
} else {
p.err_and_bump("expected integer, identifier, `self`, `super`, `crate`, or `Self`");
}
}
fn name_ref_or_index(p: &mut Parser<'_>) {
assert!(p.at(IDENT) || p.at(INT_NUMBER));
let m = p.start();
p.bump_any();
m.complete(p, NAME_REF);
}
fn lifetime(p: &mut Parser<'_>) {
assert!(p.at(LIFETIME_IDENT));
let m = p.start();
p.bump(LIFETIME_IDENT);
m.complete(p, LIFETIME);
}
fn error_block(p: &mut Parser<'_>, message: &str) {
assert!(p.at(T!['{']));
let m = p.start();
p.error(message);
p.bump(T!['{']);
expressions::expr_block_contents(p);
p.eat(T!['}']);
m.complete(p, ERROR);
}
// test_err top_level_let
// let ref foo: fn() = 1 + 3;
fn error_let_stmt(p: &mut Parser<'_>, message: &str) {
assert!(p.at(T![let]));
let m = p.start();
p.error(message);
expressions::let_stmt(p, expressions::Semicolon::Optional);
m.complete(p, ERROR);
}
/// The `parser` passed this is required to at least consume one token if it returns `true`.
/// If the `parser` returns false, parsing will stop.
fn delimited(
p: &mut Parser<'_>,
bra: SyntaxKind,
ket: SyntaxKind,
delim: SyntaxKind,
unexpected_delim_message: impl Fn() -> String,
first_set: TokenSet,
mut parser: impl FnMut(&mut Parser<'_>) -> bool,
) {
p.bump(bra);
while !p.at(ket) && !p.at(EOF) {
if p.at(delim) {
// Recover if an argument is missing and only got a delimiter,
// e.g. `(a, , b)`.
// Wrap the erroneous delimiter in an error node so that fixup logic gets rid of it.
// FIXME: Ideally this should be handled in fixup in a structured way, but our list
// nodes currently have no concept of a missing node between two delimiters.
// So doing it this way is easier.
let m = p.start();
p.error(unexpected_delim_message());
p.bump(delim);
m.complete(p, ERROR);
continue;
}
if !parser(p) {
break;
}
if !p.eat(delim) {
if p.at_ts(first_set) {
p.error(format!("expected {delim:?}"));
} else {
break;
}
}
}
p.expect(ket);
}