parser/grammar/expressions.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
mod atom;
use crate::grammar::attributes::ATTRIBUTE_FIRST;
use super::*;
pub(crate) use atom::{block_expr, match_arm_list};
pub(super) use atom::{literal, LITERAL_FIRST};
#[derive(PartialEq, Eq)]
pub(super) enum Semicolon {
Required,
Optional,
Forbidden,
}
const EXPR_FIRST: TokenSet = LHS_FIRST;
pub(super) fn expr(p: &mut Parser<'_>) -> Option<CompletedMarker> {
let r = Restrictions { forbid_structs: false, prefer_stmt: false };
expr_bp(p, None, r, 1).map(|(m, _)| m)
}
pub(super) fn expr_stmt(
p: &mut Parser<'_>,
m: Option<Marker>,
) -> Option<(CompletedMarker, BlockLike)> {
let r = Restrictions { forbid_structs: false, prefer_stmt: true };
expr_bp(p, m, r, 1)
}
fn expr_no_struct(p: &mut Parser<'_>) {
let r = Restrictions { forbid_structs: true, prefer_stmt: false };
expr_bp(p, None, r, 1);
}
/// Parses the expression in `let pattern = expression`.
/// It needs to be parsed with lower precedence than `&&`, so that
/// `if let true = true && false` is parsed as `if (let true = true) && (true)`
/// and not `if let true = (true && true)`.
fn expr_let(p: &mut Parser<'_>) {
let r = Restrictions { forbid_structs: true, prefer_stmt: false };
expr_bp(p, None, r, 5);
}
pub(super) fn stmt(p: &mut Parser<'_>, semicolon: Semicolon) {
if p.eat(T![;]) {
return;
}
let m = p.start();
// test attr_on_expr_stmt
// fn foo() {
// #[A] foo();
// #[B] bar!{}
// #[C] #[D] {}
// #[D] return ();
// }
attributes::outer_attrs(p);
if p.at(T![let]) {
let_stmt(p, semicolon);
m.complete(p, LET_STMT);
return;
}
// test block_items
// fn a() { fn b() {} }
let m = match items::opt_item(p, m, false) {
Ok(()) => return,
Err(m) => m,
};
if !p.at_ts(EXPR_FIRST) {
p.err_and_bump("expected expression, item or let statement");
m.abandon(p);
return;
}
if let Some((cm, blocklike)) = expr_stmt(p, Some(m)) {
if !(p.at(T!['}']) || (semicolon != Semicolon::Required && p.at(EOF))) {
// test no_semi_after_block
// fn foo() {
// if true {}
// loop {}
// match () {}
// while true {}
// for _ in () {}
// {}
// {}
// macro_rules! test {
// () => {}
// }
// test!{}
// }
let m = cm.precede(p);
match semicolon {
Semicolon::Required => {
if blocklike.is_block() {
p.eat(T![;]);
} else {
p.expect(T![;]);
}
}
Semicolon::Optional => {
p.eat(T![;]);
}
Semicolon::Forbidden => (),
}
m.complete(p, EXPR_STMT);
}
}
}
// test let_stmt
// fn f() { let x: i32 = 92; }
pub(super) fn let_stmt(p: &mut Parser<'_>, with_semi: Semicolon) {
p.bump(T![let]);
patterns::pattern(p);
if p.at(T![:]) {
// test let_stmt_ascription
// fn f() { let x: i32; }
types::ascription(p);
}
let mut expr_after_eq: Option<CompletedMarker> = None;
if p.eat(T![=]) {
// test let_stmt_init
// fn f() { let x = 92; }
expr_after_eq = expressions::expr(p);
}
if p.at(T![else]) {
// test_err let_else_right_curly_brace
// fn func() { let Some(_) = {Some(1)} else { panic!("h") };}
if let Some(expr) = expr_after_eq {
if BlockLike::is_blocklike(expr.kind()) {
p.error(
"right curly brace `}` before `else` in a `let...else` statement not allowed",
)
}
}
// test let_else
// fn f() { let Some(x) = opt else { return }; }
let m = p.start();
p.bump(T![else]);
block_expr(p);
m.complete(p, LET_ELSE);
}
match with_semi {
Semicolon::Forbidden => (),
Semicolon::Optional => {
p.eat(T![;]);
}
Semicolon::Required => {
p.expect(T![;]);
}
}
}
pub(super) fn expr_block_contents(p: &mut Parser<'_>) {
attributes::inner_attrs(p);
while !p.at(EOF) && !p.at(T!['}']) {
// test nocontentexpr
// fn foo(){
// ;;;some_expr();;;;{;;;};;;;Ok(())
// }
// test nocontentexpr_after_item
// fn simple_function() {
// enum LocalEnum {
// One,
// Two,
// };
// fn f() {};
// struct S {};
// }
stmt(p, Semicolon::Required);
}
}
#[derive(Clone, Copy)]
struct Restrictions {
forbid_structs: bool,
prefer_stmt: bool,
}
enum Associativity {
Left,
Right,
}
/// Binding powers of operators for a Pratt parser.
///
/// See <https://matklad.github.io/2020/04/13/simple-but-powerful-pratt-parsing.html>
///
/// Note that Rust doesn't define associativity for some infix operators (e.g. `==` and `..`) and
/// requires parentheses to disambiguate. We just treat them as left associative.
#[rustfmt::skip]
fn current_op(p: &Parser<'_>) -> (u8, SyntaxKind, Associativity) {
use Associativity::*;
const NOT_AN_OP: (u8, SyntaxKind, Associativity) = (0, T![@], Left);
match p.current() {
T![|] if p.at(T![||]) => (3, T![||], Left),
T![|] if p.at(T![|=]) => (1, T![|=], Right),
T![|] => (6, T![|], Left),
T![>] if p.at(T![>>=]) => (1, T![>>=], Right),
T![>] if p.at(T![>>]) => (9, T![>>], Left),
T![>] if p.at(T![>=]) => (5, T![>=], Left),
T![>] => (5, T![>], Left),
T![=] if p.at(T![==]) => (5, T![==], Left),
T![=] if !p.at(T![=>]) => (1, T![=], Right),
T![<] if p.at(T![<=]) => (5, T![<=], Left),
T![<] if p.at(T![<<=]) => (1, T![<<=], Right),
T![<] if p.at(T![<<]) => (9, T![<<], Left),
T![<] => (5, T![<], Left),
T![+] if p.at(T![+=]) => (1, T![+=], Right),
T![+] => (10, T![+], Left),
T![^] if p.at(T![^=]) => (1, T![^=], Right),
T![^] => (7, T![^], Left),
T![%] if p.at(T![%=]) => (1, T![%=], Right),
T![%] => (11, T![%], Left),
T![&] if p.at(T![&=]) => (1, T![&=], Right),
// If you update this, remember to update `expr_let()` too.
T![&] if p.at(T![&&]) => (4, T![&&], Left),
T![&] => (8, T![&], Left),
T![/] if p.at(T![/=]) => (1, T![/=], Right),
T![/] => (11, T![/], Left),
T![*] if p.at(T![*=]) => (1, T![*=], Right),
T![*] => (11, T![*], Left),
T![.] if p.at(T![..=]) => (2, T![..=], Left),
T![.] if p.at(T![..]) => (2, T![..], Left),
T![!] if p.at(T![!=]) => (5, T![!=], Left),
T![-] if p.at(T![-=]) => (1, T![-=], Right),
T![-] => (10, T![-], Left),
T![as] => (12, T![as], Left),
_ => NOT_AN_OP
}
}
// Parses expression with binding power of at least bp.
fn expr_bp(
p: &mut Parser<'_>,
m: Option<Marker>,
r: Restrictions,
bp: u8,
) -> Option<(CompletedMarker, BlockLike)> {
let m = m.unwrap_or_else(|| {
let m = p.start();
attributes::outer_attrs(p);
m
});
if !p.at_ts(EXPR_FIRST) {
p.err_recover("expected expression", atom::EXPR_RECOVERY_SET);
m.abandon(p);
return None;
}
let mut lhs = match lhs(p, r) {
Some((lhs, blocklike)) => {
let lhs = lhs.extend_to(p, m);
if r.prefer_stmt && blocklike.is_block() {
// test stmt_bin_expr_ambiguity
// fn f() {
// let _ = {1} & 2;
// {1} &2;
// }
return Some((lhs, BlockLike::Block));
}
lhs
}
None => {
m.abandon(p);
return None;
}
};
loop {
let is_range = p.at(T![..]) || p.at(T![..=]);
let (op_bp, op, associativity) = current_op(p);
if op_bp < bp {
break;
}
// test as_precedence
// fn f() { let _ = &1 as *const i32; }
if p.at(T![as]) {
lhs = cast_expr(p, lhs);
continue;
}
let m = lhs.precede(p);
p.bump(op);
if is_range {
// test postfix_range
// fn foo() {
// let x = 1..;
// match 1.. { _ => () };
// match a.b()..S { _ => () };
// }
let has_trailing_expression =
p.at_ts(EXPR_FIRST) && !(r.forbid_structs && p.at(T!['{']));
if !has_trailing_expression {
// no RHS
lhs = m.complete(p, RANGE_EXPR);
break;
}
}
let op_bp = match associativity {
Associativity::Left => op_bp + 1,
Associativity::Right => op_bp,
};
// test binop_resets_statementness
// fn f() { v = {1}&2; }
expr_bp(p, None, Restrictions { prefer_stmt: false, ..r }, op_bp);
lhs = m.complete(p, if is_range { RANGE_EXPR } else { BIN_EXPR });
}
Some((lhs, BlockLike::NotBlock))
}
const LHS_FIRST: TokenSet =
atom::ATOM_EXPR_FIRST.union(TokenSet::new(&[T![&], T![*], T![!], T![.], T![-], T![_]]));
fn lhs(p: &mut Parser<'_>, r: Restrictions) -> Option<(CompletedMarker, BlockLike)> {
let m;
let kind = match p.current() {
// test ref_expr
// fn foo() {
// // reference operator
// let _ = &1;
// let _ = &mut &f();
// let _ = &raw;
// let _ = &raw.0;
// // raw reference operator
// let _ = &raw mut foo;
// let _ = &raw const foo;
// }
T![&] => {
m = p.start();
p.bump(T![&]);
if p.at_contextual_kw(T![raw]) && [T![mut], T![const]].contains(&p.nth(1)) {
p.bump_remap(T![raw]);
p.bump_any();
} else {
p.eat(T![mut]);
}
REF_EXPR
}
// test unary_expr
// fn foo() {
// **&1;
// !!true;
// --1;
// }
T![*] | T![!] | T![-] => {
m = p.start();
p.bump_any();
PREFIX_EXPR
}
_ => {
// test full_range_expr
// fn foo() { xs[..]; }
for op in [T![..=], T![..]] {
if p.at(op) {
m = p.start();
p.bump(op);
// test closure_range_method_call
// fn foo() {
// || .. .method();
// || .. .field;
// }
let has_access_after = p.at(T![.]) && p.nth_at(1, SyntaxKind::IDENT);
let struct_forbidden = r.forbid_structs && p.at(T!['{']);
if p.at_ts(EXPR_FIRST) && !has_access_after && !struct_forbidden {
expr_bp(p, None, r, 2);
}
let cm = m.complete(p, RANGE_EXPR);
return Some((cm, BlockLike::NotBlock));
}
}
// test expression_after_block
// fn foo() {
// let mut p = F{x: 5};
// {p}.x = 10;
// }
let (lhs, blocklike) = atom::atom_expr(p, r)?;
let (cm, block_like) =
postfix_expr(p, lhs, blocklike, !(r.prefer_stmt && blocklike.is_block()));
return Some((cm, block_like));
}
};
// parse the interior of the unary expression
expr_bp(p, None, r, 255);
let cm = m.complete(p, kind);
Some((cm, BlockLike::NotBlock))
}
fn postfix_expr(
p: &mut Parser<'_>,
mut lhs: CompletedMarker,
// Calls are disallowed if the type is a block and we prefer statements because the call cannot be disambiguated from a tuple
// E.g. `while true {break}();` is parsed as
// `while true {break}; ();`
mut block_like: BlockLike,
mut allow_calls: bool,
) -> (CompletedMarker, BlockLike) {
loop {
lhs = match p.current() {
// test stmt_postfix_expr_ambiguity
// fn foo() {
// match () {
// _ => {}
// () => {}
// [] => {}
// }
// }
T!['('] if allow_calls => call_expr(p, lhs),
T!['['] if allow_calls => index_expr(p, lhs),
T![.] => match postfix_dot_expr::<false>(p, lhs) {
Ok(it) => it,
Err(it) => {
lhs = it;
break;
}
},
T![?] => try_expr(p, lhs),
_ => break,
};
allow_calls = true;
block_like = BlockLike::NotBlock;
}
(lhs, block_like)
}
fn postfix_dot_expr<const FLOAT_RECOVERY: bool>(
p: &mut Parser<'_>,
lhs: CompletedMarker,
) -> Result<CompletedMarker, CompletedMarker> {
if !FLOAT_RECOVERY {
assert!(p.at(T![.]));
}
let nth1 = if FLOAT_RECOVERY { 0 } else { 1 };
let nth2 = if FLOAT_RECOVERY { 1 } else { 2 };
if PATH_NAME_REF_KINDS.contains(p.nth(nth1))
&& (p.nth(nth2) == T!['('] || p.nth_at(nth2, T![::]))
{
return Ok(method_call_expr::<FLOAT_RECOVERY>(p, lhs));
}
// test await_expr
// fn foo() {
// x.await;
// x.0.await;
// x.0().await?.hello();
// x.0.0.await;
// x.0. await;
// }
if p.nth(nth1) == T![await] {
let m = lhs.precede(p);
if !FLOAT_RECOVERY {
p.bump(T![.]);
}
p.bump(T![await]);
return Ok(m.complete(p, AWAIT_EXPR));
}
if p.at(T![..=]) || p.at(T![..]) {
return Err(lhs);
}
field_expr::<FLOAT_RECOVERY>(p, lhs)
}
// test call_expr
// fn foo() {
// let _ = f();
// let _ = f()(1)(1, 2,);
// let _ = f(<Foo>::func());
// f(<Foo as Trait>::func());
// }
fn call_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T!['(']));
let m = lhs.precede(p);
arg_list(p);
m.complete(p, CALL_EXPR)
}
// test index_expr
// fn foo() {
// x[1][2];
// }
fn index_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T!['[']));
let m = lhs.precede(p);
p.bump(T!['[']);
expr(p);
p.expect(T![']']);
m.complete(p, INDEX_EXPR)
}
// test method_call_expr
// fn foo() {
// x.foo();
// y.bar::<T>(1, 2,);
// x.0.0.call();
// x.0. call();
// x.0()
// }
fn method_call_expr<const FLOAT_RECOVERY: bool>(
p: &mut Parser<'_>,
lhs: CompletedMarker,
) -> CompletedMarker {
if FLOAT_RECOVERY {
assert!(p.at_ts(PATH_NAME_REF_KINDS) && (p.nth(1) == T!['('] || p.nth_at(1, T![::])));
} else {
assert!(
p.at(T![.])
&& PATH_NAME_REF_KINDS.contains(p.nth(1))
&& (p.nth(2) == T!['('] || p.nth_at(2, T![::]))
);
}
let m = lhs.precede(p);
if !FLOAT_RECOVERY {
p.bump(T![.]);
}
name_ref_mod_path(p);
generic_args::opt_generic_arg_list_expr(p);
if p.at(T!['(']) {
arg_list(p);
} else {
// emit an error when argument list is missing
// test_err method_call_missing_argument_list
// fn func() {
// foo.bar::<>
// foo.bar::<i32>;
// }
p.error("expected argument list");
}
m.complete(p, METHOD_CALL_EXPR)
}
// test field_expr
// fn foo() {
// x.self;
// x.Self;
// x.foo;
// x.0.bar;
// x.0.1;
// x.0. bar;
// x.0();
// }
fn field_expr<const FLOAT_RECOVERY: bool>(
p: &mut Parser<'_>,
lhs: CompletedMarker,
) -> Result<CompletedMarker, CompletedMarker> {
if !FLOAT_RECOVERY {
assert!(p.at(T![.]));
}
let m = lhs.precede(p);
if !FLOAT_RECOVERY {
p.bump(T![.]);
}
if p.at_ts(PATH_NAME_REF_OR_INDEX_KINDS) {
name_ref_mod_path_or_index(p);
} else if p.at(FLOAT_NUMBER) {
return match p.split_float(m) {
(true, m) => {
let lhs = m.complete(p, FIELD_EXPR);
postfix_dot_expr::<true>(p, lhs)
}
(false, m) => Ok(m.complete(p, FIELD_EXPR)),
};
} else {
p.error("expected field name or number");
}
Ok(m.complete(p, FIELD_EXPR))
}
// test try_expr
// fn foo() {
// x?;
// }
fn try_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T![?]));
let m = lhs.precede(p);
p.bump(T![?]);
m.complete(p, TRY_EXPR)
}
// test cast_expr
// fn foo() {
// 82 as i32;
// 81 as i8 + 1;
// 79 as i16 - 1;
// 0x36 as u8 <= 0x37;
// }
fn cast_expr(p: &mut Parser<'_>, lhs: CompletedMarker) -> CompletedMarker {
assert!(p.at(T![as]));
let m = lhs.precede(p);
p.bump(T![as]);
// Use type_no_bounds(), because cast expressions are not
// allowed to have bounds.
types::type_no_bounds(p);
m.complete(p, CAST_EXPR)
}
// test_err arg_list_recovery
// fn main() {
// foo(bar::);
// foo(bar:);
// foo(bar+);
// foo(a, , b);
// }
fn arg_list(p: &mut Parser<'_>) {
assert!(p.at(T!['(']));
let m = p.start();
// test arg_with_attr
// fn main() {
// foo(#[attr] 92)
// }
delimited(
p,
T!['('],
T![')'],
T![,],
|| "expected expression".into(),
EXPR_FIRST.union(ATTRIBUTE_FIRST),
|p| expr(p).is_some(),
);
m.complete(p, ARG_LIST);
}
// test path_expr
// fn foo() {
// let _ = a;
// let _ = a::b;
// let _ = ::a::<b>;
// let _ = format!();
// }
fn path_expr(p: &mut Parser<'_>, r: Restrictions) -> (CompletedMarker, BlockLike) {
assert!(paths::is_path_start(p));
let m = p.start();
paths::expr_path(p);
match p.current() {
T!['{'] if !r.forbid_structs => {
record_expr_field_list(p);
(m.complete(p, RECORD_EXPR), BlockLike::NotBlock)
}
T![!] if !p.at(T![!=]) => {
let block_like = items::macro_call_after_excl(p);
(m.complete(p, MACRO_CALL).precede(p).complete(p, MACRO_EXPR), block_like)
}
_ => (m.complete(p, PATH_EXPR), BlockLike::NotBlock),
}
}
// test record_lit
// fn foo() {
// S {};
// S { x };
// S { x, y: 32, };
// S { x, y: 32, ..Default::default() };
// S { x: ::default() };
// TupleStruct { 0: 1 };
// }
pub(crate) fn record_expr_field_list(p: &mut Parser<'_>) {
assert!(p.at(T!['{']));
let m = p.start();
p.bump(T!['{']);
while !p.at(EOF) && !p.at(T!['}']) {
let m = p.start();
// test record_literal_field_with_attr
// fn main() {
// S { #[cfg(test)] field: 1 }
// }
attributes::outer_attrs(p);
match p.current() {
IDENT | INT_NUMBER if p.nth_at(1, T![::]) => {
// test_err record_literal_missing_ellipsis_recovery
// fn main() {
// S { S::default() };
// S { 0::default() };
// }
m.abandon(p);
p.expect(T![..]);
expr(p);
}
IDENT | INT_NUMBER if p.nth_at(1, T![..]) => {
// test_err record_literal_before_ellipsis_recovery
// fn main() {
// S { field ..S::default() }
// S { 0 ..S::default() }
// }
name_ref_or_index(p);
p.error("expected `:`");
m.complete(p, RECORD_EXPR_FIELD);
}
IDENT | INT_NUMBER => {
// test_err record_literal_field_eq_recovery
// fn main() {
// S { field = foo }
// S { 0 = foo }
// }
if p.nth_at(1, T![:]) {
name_ref_or_index(p);
p.bump(T![:]);
} else if p.nth_at(1, T![=]) {
name_ref_or_index(p);
p.err_and_bump("expected `:`");
}
expr(p);
m.complete(p, RECORD_EXPR_FIELD);
}
T![.] if p.at(T![..]) => {
m.abandon(p);
p.bump(T![..]);
// test destructuring_assignment_struct_rest_pattern
// fn foo() {
// S { .. } = S {};
// }
// We permit `.. }` on the left-hand side of a destructuring assignment.
if !p.at(T!['}']) {
expr(p);
if p.at(T![,]) {
// test_err comma_after_functional_update_syntax
// fn foo() {
// S { ..x, };
// S { ..x, a: 0 }
// }
// Do not bump, so we can support additional fields after this comma.
p.error("cannot use a comma after the base struct");
}
}
}
T!['{'] => {
error_block(p, "expected a field");
m.abandon(p);
}
_ => {
p.err_and_bump("expected identifier");
m.abandon(p);
}
}
if !p.at(T!['}']) {
p.expect(T![,]);
}
}
p.expect(T!['}']);
m.complete(p, RECORD_EXPR_FIELD_LIST);
}