parser/grammar/items/
traits.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use super::*;

// test trait_item
// trait T { fn new() -> Self; }
pub(super) fn trait_(p: &mut Parser<'_>, m: Marker) {
    p.bump(T![trait]);
    name_r(p, ITEM_RECOVERY_SET);

    // test trait_item_generic_params
    // trait X<U: Debug + Display> {}
    generic_params::opt_generic_param_list(p);

    if p.eat(T![=]) {
        // test trait_alias
        // trait Z<U> = T<U>;
        generic_params::bounds_without_colon(p);

        // test trait_alias_where_clause
        // trait Z<U> = T<U> where U: Copy;
        // trait Z<U> = where Self: T<U>;
        generic_params::opt_where_clause(p);
        p.expect(T![;]);
        m.complete(p, TRAIT_ALIAS);
        return;
    }

    if p.at(T![:]) {
        // test trait_item_bounds
        // trait T: Hash + Clone {}
        generic_params::bounds(p);
    }

    // test trait_item_where_clause
    // trait T where Self: Copy {}
    generic_params::opt_where_clause(p);

    if p.at(T!['{']) {
        assoc_item_list(p);
    } else {
        p.error("expected `{`");
    }
    m.complete(p, TRAIT);
}

// test impl_item
// impl S {}
pub(super) fn impl_(p: &mut Parser<'_>, m: Marker) {
    p.bump(T![impl]);
    if p.at(T![<]) && not_a_qualified_path(p) {
        generic_params::opt_generic_param_list(p);
    }

    // test impl_item_const
    // impl const Send for S {}
    p.eat(T![const]);

    // FIXME: never type
    // impl ! {}

    // test impl_item_neg
    // impl !Send for S {}
    p.eat(T![!]);
    impl_type(p);
    if p.eat(T![for]) {
        impl_type(p);
    }
    generic_params::opt_where_clause(p);
    if p.at(T!['{']) {
        assoc_item_list(p);
    } else {
        p.error("expected `{`");
    }
    m.complete(p, IMPL);
}

// test assoc_item_list
// impl F {
//     type A = i32;
//     const B: i32 = 92;
//     fn foo() {}
//     fn bar(&self) {}
// }
pub(crate) fn assoc_item_list(p: &mut Parser<'_>) {
    assert!(p.at(T!['{']));

    let m = p.start();
    p.bump(T!['{']);
    // test assoc_item_list_inner_attrs
    // impl S { #![attr] }
    attributes::inner_attrs(p);

    while !p.at(EOF) && !p.at(T!['}']) {
        if p.at(T!['{']) {
            error_block(p, "expected an item");
            continue;
        }
        item_or_macro(p, true, false);
    }
    p.expect(T!['}']);
    m.complete(p, ASSOC_ITEM_LIST);
}

// test impl_type_params
// impl<const N: u32> Bar<N> {}
fn not_a_qualified_path(p: &Parser<'_>) -> bool {
    // There's an ambiguity between generic parameters and qualified paths in impls.
    // If we see `<` it may start both, so we have to inspect some following tokens.
    // The following combinations can only start generics,
    // but not qualified paths (with one exception):
    //     `<` `>` - empty generic parameters
    //     `<` `#` - generic parameters with attributes
    //     `<` `const` - const generic parameters
    //     `<` (LIFETIME_IDENT|IDENT) `>` - single generic parameter
    //     `<` (LIFETIME_IDENT|IDENT) `,` - first generic parameter in a list
    //     `<` (LIFETIME_IDENT|IDENT) `:` - generic parameter with bounds
    //     `<` (LIFETIME_IDENT|IDENT) `=` - generic parameter with a default
    // The only truly ambiguous case is
    //     `<` IDENT `>` `::` IDENT ...
    // we disambiguate it in favor of generics (`impl<T> ::absolute::Path<T> { ... }`)
    // because this is what almost always expected in practice, qualified paths in impls
    // (`impl <Type>::AssocTy { ... }`) aren't even allowed by type checker at the moment.
    if [T![#], T![>], T![const]].contains(&p.nth(1)) {
        return true;
    }
    ([LIFETIME_IDENT, IDENT].contains(&p.nth(1)))
        && ([T![>], T![,], T![:], T![=]].contains(&p.nth(2)))
}

// test_err impl_type
// impl Type {}
// impl Trait1 for T {}
// impl impl NotType {}
// impl Trait2 for impl NotType {}
pub(crate) fn impl_type(p: &mut Parser<'_>) {
    if p.at(T![impl]) {
        p.error("expected trait or type");
        return;
    }
    types::type_(p);
}