parser/grammar/items/traits.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
use super::*;
// test trait_item
// trait T { fn new() -> Self; }
pub(super) fn trait_(p: &mut Parser<'_>, m: Marker) {
p.bump(T![trait]);
name_r(p, ITEM_RECOVERY_SET);
// test trait_item_generic_params
// trait X<U: Debug + Display> {}
generic_params::opt_generic_param_list(p);
if p.eat(T![=]) {
// test trait_alias
// trait Z<U> = T<U>;
generic_params::bounds_without_colon(p);
// test trait_alias_where_clause
// trait Z<U> = T<U> where U: Copy;
// trait Z<U> = where Self: T<U>;
generic_params::opt_where_clause(p);
p.expect(T![;]);
m.complete(p, TRAIT_ALIAS);
return;
}
if p.at(T![:]) {
// test trait_item_bounds
// trait T: Hash + Clone {}
generic_params::bounds(p);
}
// test trait_item_where_clause
// trait T where Self: Copy {}
generic_params::opt_where_clause(p);
if p.at(T!['{']) {
assoc_item_list(p);
} else {
p.error("expected `{`");
}
m.complete(p, TRAIT);
}
// test impl_item
// impl S {}
pub(super) fn impl_(p: &mut Parser<'_>, m: Marker) {
p.bump(T![impl]);
if p.at(T![<]) && not_a_qualified_path(p) {
generic_params::opt_generic_param_list(p);
}
// test impl_item_const
// impl const Send for S {}
p.eat(T![const]);
// FIXME: never type
// impl ! {}
// test impl_item_neg
// impl !Send for S {}
p.eat(T![!]);
impl_type(p);
if p.eat(T![for]) {
impl_type(p);
}
generic_params::opt_where_clause(p);
if p.at(T!['{']) {
assoc_item_list(p);
} else {
p.error("expected `{`");
}
m.complete(p, IMPL);
}
// test assoc_item_list
// impl F {
// type A = i32;
// const B: i32 = 92;
// fn foo() {}
// fn bar(&self) {}
// }
pub(crate) fn assoc_item_list(p: &mut Parser<'_>) {
assert!(p.at(T!['{']));
let m = p.start();
p.bump(T!['{']);
// test assoc_item_list_inner_attrs
// impl S { #![attr] }
attributes::inner_attrs(p);
while !p.at(EOF) && !p.at(T!['}']) {
if p.at(T!['{']) {
error_block(p, "expected an item");
continue;
}
item_or_macro(p, true, false);
}
p.expect(T!['}']);
m.complete(p, ASSOC_ITEM_LIST);
}
// test impl_type_params
// impl<const N: u32> Bar<N> {}
fn not_a_qualified_path(p: &Parser<'_>) -> bool {
// There's an ambiguity between generic parameters and qualified paths in impls.
// If we see `<` it may start both, so we have to inspect some following tokens.
// The following combinations can only start generics,
// but not qualified paths (with one exception):
// `<` `>` - empty generic parameters
// `<` `#` - generic parameters with attributes
// `<` `const` - const generic parameters
// `<` (LIFETIME_IDENT|IDENT) `>` - single generic parameter
// `<` (LIFETIME_IDENT|IDENT) `,` - first generic parameter in a list
// `<` (LIFETIME_IDENT|IDENT) `:` - generic parameter with bounds
// `<` (LIFETIME_IDENT|IDENT) `=` - generic parameter with a default
// The only truly ambiguous case is
// `<` IDENT `>` `::` IDENT ...
// we disambiguate it in favor of generics (`impl<T> ::absolute::Path<T> { ... }`)
// because this is what almost always expected in practice, qualified paths in impls
// (`impl <Type>::AssocTy { ... }`) aren't even allowed by type checker at the moment.
if [T![#], T![>], T![const]].contains(&p.nth(1)) {
return true;
}
([LIFETIME_IDENT, IDENT].contains(&p.nth(1)))
&& ([T![>], T![,], T![:], T![=]].contains(&p.nth(2)))
}
// test_err impl_type
// impl Type {}
// impl Trait1 for T {}
// impl impl NotType {}
// impl Trait2 for impl NotType {}
pub(crate) fn impl_type(p: &mut Parser<'_>) {
if p.at(T![impl]) {
p.error("expected trait or type");
return;
}
types::type_(p);
}