ra_salsa/
lru.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
use oorandom::Rand64;
use parking_lot::Mutex;
use std::fmt::Debug;
use std::sync::atomic::AtomicU16;
use std::sync::atomic::Ordering;
use triomphe::Arc;

/// A simple and approximate concurrent lru list.
///
/// We assume but do not verify that each node is only used with one
/// list. If this is not the case, it is not *unsafe*, but panics and
/// weird results will ensue.
///
/// Each "node" in the list is of type `Node` and must implement
/// `LruNode`, which is a trait that gives access to a field that
/// stores the index in the list. This index gives us a rough idea of
/// how recently the node has been used.
#[derive(Debug)]
pub(crate) struct Lru<Node>
where
    Node: LruNode,
{
    green_zone: AtomicU16,
    data: Mutex<LruData<Node>>,
}

#[derive(Debug)]
struct LruData<Node> {
    end_red_zone: u16,
    end_yellow_zone: u16,
    end_green_zone: u16,
    rng: Rand64,
    entries: Vec<Arc<Node>>,
}

pub(crate) trait LruNode: Sized + Debug {
    fn lru_index(&self) -> &LruIndex;
}

#[derive(Debug)]
pub(crate) struct LruIndex {
    /// Index in the appropriate LRU list, or std::u16::MAX if not a
    /// member.
    index: AtomicU16,
}

impl<Node> Default for Lru<Node>
where
    Node: LruNode,
{
    fn default() -> Self {
        Lru::new()
    }
}

// We always use a fixed seed for our randomness so that we have
// predictable results.
const LRU_SEED: &str = "Hello, Rustaceans";

impl<Node> Lru<Node>
where
    Node: LruNode,
{
    /// Creates a new LRU list where LRU caching is disabled.
    pub(crate) fn new() -> Self {
        Self::with_seed(LRU_SEED)
    }

    #[cfg_attr(not(test), allow(dead_code))]
    fn with_seed(seed: &str) -> Self {
        Lru { green_zone: AtomicU16::new(0), data: Mutex::new(LruData::with_seed(seed)) }
    }

    /// Adjust the total number of nodes permitted to have a value at
    /// once.  If `len` is zero, this disables LRU caching completely.
    pub(crate) fn set_lru_capacity(&self, len: u16) {
        let mut data = self.data.lock();

        // We require each zone to have at least 1 slot. Therefore,
        // the length cannot be just 1 or 2.
        if len == 0 {
            self.green_zone.store(0, Ordering::Release);
            data.resize(0, 0, 0);
        } else {
            let len = std::cmp::max(len, 3);

            // Top 10% is the green zone. This must be at least length 1.
            let green_zone = std::cmp::max(len / 10, 1);

            // Next 20% is the yellow zone.
            let yellow_zone = std::cmp::max(len / 5, 1);

            // Remaining 70% is the red zone.
            let red_zone = len - yellow_zone - green_zone;

            // We need quick access to the green zone.
            self.green_zone.store(green_zone, Ordering::Release);

            // Resize existing array.
            data.resize(green_zone, yellow_zone, red_zone);
        }
    }

    /// Records that `node` was used. This may displace an old node (if the LRU limits are
    pub(crate) fn record_use(&self, node: &Arc<Node>) -> Option<Arc<Node>> {
        tracing::debug!("record_use(node={:?})", node);

        // Load green zone length and check if the LRU cache is even enabled.
        let green_zone = self.green_zone.load(Ordering::Acquire);
        tracing::debug!("record_use: green_zone={}", green_zone);
        if green_zone == 0 {
            return None;
        }

        // Find current index of list (if any) and the current length
        // of our green zone.
        let index = node.lru_index().load();
        tracing::debug!("record_use: index={}", index);

        // Already a member of the list, and in the green zone -- nothing to do!
        if index < green_zone {
            return None;
        }

        self.data.lock().record_use(node)
    }

    pub(crate) fn purge(&self) {
        self.green_zone.store(0, Ordering::SeqCst);
        *self.data.lock() = LruData::with_seed(LRU_SEED);
    }
}

impl<Node> LruData<Node>
where
    Node: LruNode,
{
    fn with_seed(seed_str: &str) -> Self {
        Self::with_rng(rng_with_seed(seed_str))
    }

    fn with_rng(rng: Rand64) -> Self {
        LruData { end_yellow_zone: 0, end_green_zone: 0, end_red_zone: 0, entries: Vec::new(), rng }
    }

    fn green_zone(&self) -> std::ops::Range<u16> {
        0..self.end_green_zone
    }

    fn yellow_zone(&self) -> std::ops::Range<u16> {
        self.end_green_zone..self.end_yellow_zone
    }

    fn red_zone(&self) -> std::ops::Range<u16> {
        self.end_yellow_zone..self.end_red_zone
    }

    fn resize(&mut self, len_green_zone: u16, len_yellow_zone: u16, len_red_zone: u16) {
        self.end_green_zone = len_green_zone;
        self.end_yellow_zone = self.end_green_zone + len_yellow_zone;
        self.end_red_zone = self.end_yellow_zone + len_red_zone;
        let entries =
            std::mem::replace(&mut self.entries, Vec::with_capacity(self.end_red_zone as usize));

        tracing::debug!("green_zone = {:?}", self.green_zone());
        tracing::debug!("yellow_zone = {:?}", self.yellow_zone());
        tracing::debug!("red_zone = {:?}", self.red_zone());

        // We expect to resize when the LRU cache is basically empty.
        // So just forget all the old LRU indices to start.
        for entry in entries {
            entry.lru_index().clear();
        }
    }

    /// Records that a node was used. If it is already a member of the
    /// LRU list, it is promoted to the green zone (unless it's
    /// already there). Otherwise, it is added to the list first and
    /// *then* promoted to the green zone. Adding a new node to the
    /// list may displace an old member of the red zone, in which case
    /// that is returned.
    fn record_use(&mut self, node: &Arc<Node>) -> Option<Arc<Node>> {
        tracing::debug!("record_use(node={:?})", node);

        // NB: When this is invoked, we have typically already loaded
        // the LRU index (to check if it is in green zone). But that
        // check was done outside the lock and -- for all we know --
        // the index may have changed since. So we always reload.
        let index = node.lru_index().load();

        if index < self.end_green_zone {
            None
        } else if index < self.end_yellow_zone {
            self.promote_yellow_to_green(node, index);
            None
        } else if index < self.end_red_zone {
            self.promote_red_to_green(node, index);
            None
        } else {
            self.insert_new(node)
        }
    }

    /// Inserts a node that is not yet a member of the LRU list. If
    /// the list is at capacity, this can displace an existing member.
    fn insert_new(&mut self, node: &Arc<Node>) -> Option<Arc<Node>> {
        debug_assert!(!node.lru_index().is_in_lru());

        // Easy case: we still have capacity. Push it, and then promote
        // it up to the appropriate zone.
        let len = self.entries.len() as u16;
        if len < self.end_red_zone {
            self.entries.push(node.clone());
            node.lru_index().store(len);
            tracing::debug!("inserted node {:?} at {}", node, len);
            return self.record_use(node);
        }

        // Harder case: no capacity. Create some by evicting somebody from red
        // zone and then promoting.
        let victim_index = self.pick_index(self.red_zone());
        let victim_node = std::mem::replace(&mut self.entries[victim_index as usize], node.clone());
        tracing::debug!("evicting red node {:?} from {}", victim_node, victim_index);
        victim_node.lru_index().clear();
        self.promote_red_to_green(node, victim_index);
        Some(victim_node)
    }

    /// Promotes the node `node`, stored at `red_index` (in the red
    /// zone), into a green index, demoting yellow/green nodes at
    /// random.
    ///
    /// NB: It is not required that `node.lru_index()` is up-to-date
    /// when entering this method.
    fn promote_red_to_green(&mut self, node: &Arc<Node>, red_index: u16) {
        debug_assert!(self.red_zone().contains(&red_index));

        // Pick a yellow at random and switch places with it.
        //
        // Subtle: we do not update `node.lru_index` *yet* -- we're
        // going to invoke `self.promote_yellow` next, and it will get
        // updated then.
        let yellow_index = self.pick_index(self.yellow_zone());
        tracing::debug!(
            "demoting yellow node {:?} from {} to red at {}",
            self.entries[yellow_index as usize],
            yellow_index,
            red_index,
        );
        self.entries.swap(yellow_index as usize, red_index as usize);
        self.entries[red_index as usize].lru_index().store(red_index);

        // Now move ourselves up into the green zone.
        self.promote_yellow_to_green(node, yellow_index);
    }

    /// Promotes the node `node`, stored at `yellow_index` (in the
    /// yellow zone), into a green index, demoting a green node at
    /// random to replace it.
    ///
    /// NB: It is not required that `node.lru_index()` is up-to-date
    /// when entering this method.
    fn promote_yellow_to_green(&mut self, node: &Arc<Node>, yellow_index: u16) {
        debug_assert!(self.yellow_zone().contains(&yellow_index));

        // Pick a yellow at random and switch places with it.
        let green_index = self.pick_index(self.green_zone());
        tracing::debug!(
            "demoting green node {:?} from {} to yellow at {}",
            self.entries[green_index as usize],
            green_index,
            yellow_index
        );
        self.entries.swap(green_index as usize, yellow_index as usize);
        self.entries[yellow_index as usize].lru_index().store(yellow_index);
        node.lru_index().store(green_index);

        tracing::debug!("promoted {:?} to green index {}", node, green_index);
    }

    fn pick_index(&mut self, zone: std::ops::Range<u16>) -> u16 {
        let end_index = std::cmp::min(zone.end, self.entries.len() as u16);
        self.rng.rand_range(zone.start as u64..end_index as u64) as u16
    }
}

impl Default for LruIndex {
    fn default() -> Self {
        Self { index: AtomicU16::new(u16::MAX) }
    }
}

impl LruIndex {
    fn load(&self) -> u16 {
        self.index.load(Ordering::Acquire) // see note on ordering below
    }

    fn store(&self, value: u16) {
        self.index.store(value, Ordering::Release) // see note on ordering below
    }

    fn clear(&self) {
        self.store(u16::MAX);
    }

    fn is_in_lru(&self) -> bool {
        self.load() != u16::MAX
    }
}

fn rng_with_seed(seed_str: &str) -> Rand64 {
    let mut seed: [u8; 16] = [0; 16];
    for (i, &b) in seed_str.as_bytes().iter().take(16).enumerate() {
        seed[i] = b;
    }
    Rand64::new(u128::from_le_bytes(seed))
}

// A note on ordering:
//
// I chose to use AcqRel for the ordering but I don't think it's
// strictly needed.  All writes occur under a lock, so they should be
// ordered w/r/t one another.  As for the reads, they can occur
// outside the lock, but they don't themselves enable dependent reads
// -- if the reads are out of bounds, we would acquire a lock.