ra_salsa/
runtime.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
use crate::durability::Durability;
use crate::hash::FxIndexSet;
use crate::plumbing::CycleRecoveryStrategy;
use crate::revision::{AtomicRevision, Revision};
use crate::{Cancelled, Cycle, Database, DatabaseKeyIndex, Event, EventKind};
use itertools::Itertools;
use parking_lot::lock_api::{RawRwLock, RawRwLockRecursive};
use parking_lot::{Mutex, RwLock};
use std::hash::Hash;
use std::panic::panic_any;
use std::sync::atomic::{AtomicU32, Ordering};
use tracing::debug;
use triomphe::{Arc, ThinArc};

mod dependency_graph;
use dependency_graph::DependencyGraph;

pub(crate) mod local_state;
use local_state::LocalState;

use self::local_state::{ActiveQueryGuard, QueryRevisions};

/// The salsa runtime stores the storage for all queries as well as
/// tracking the query stack and dependencies between cycles.
///
/// Each new runtime you create (e.g., via `Runtime::new` or
/// `Runtime::default`) will have an independent set of query storage
/// associated with it. Normally, therefore, you only do this once, at
/// the start of your application.
pub struct Runtime {
    /// Our unique runtime id.
    id: RuntimeId,

    /// If this is a "forked" runtime, then the `revision_guard` will
    /// be `Some`; this guard holds a read-lock on the global query
    /// lock.
    revision_guard: Option<RevisionGuard>,

    /// Local state that is specific to this runtime (thread).
    local_state: LocalState,

    /// Shared state that is accessible via all runtimes.
    shared_state: Arc<SharedState>,
}

#[derive(Clone, Debug)]
pub(crate) enum WaitResult {
    Completed,
    Panicked,
    Cycle(Cycle),
}

impl Default for Runtime {
    fn default() -> Self {
        Runtime {
            id: RuntimeId { counter: 0 },
            revision_guard: None,
            shared_state: Default::default(),
            local_state: Default::default(),
        }
    }
}

impl std::fmt::Debug for Runtime {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        fmt.debug_struct("Runtime")
            .field("id", &self.id())
            .field("forked", &self.revision_guard.is_some())
            .field("shared_state", &self.shared_state)
            .finish()
    }
}

impl Runtime {
    /// Create a new runtime; equivalent to `Self::default`. This is
    /// used when creating a new database.
    pub fn new() -> Self {
        Self::default()
    }

    /// See [`crate::storage::Storage::snapshot`].
    pub(crate) fn snapshot(&self) -> Self {
        if self.local_state.query_in_progress() {
            panic!("it is not legal to `snapshot` during a query (see salsa-rs/salsa#80)");
        }

        let revision_guard = RevisionGuard::new(&self.shared_state);

        let id = RuntimeId { counter: self.shared_state.next_id.fetch_add(1, Ordering::SeqCst) };

        Runtime {
            id,
            revision_guard: Some(revision_guard),
            shared_state: self.shared_state.clone(),
            local_state: Default::default(),
        }
    }

    /// A "synthetic write" causes the system to act *as though* some
    /// input of durability `durability` has changed. This is mostly
    /// useful for profiling scenarios.
    ///
    /// **WARNING:** Just like an ordinary write, this method triggers
    /// cancellation. If you invoke it while a snapshot exists, it
    /// will block until that snapshot is dropped -- if that snapshot
    /// is owned by the current thread, this could trigger deadlock.
    pub fn synthetic_write(&mut self, durability: Durability) {
        self.with_incremented_revision(|_next_revision| Some(durability));
    }

    /// The unique identifier attached to this `SalsaRuntime`. Each
    /// snapshotted runtime has a distinct identifier.
    #[inline]
    pub fn id(&self) -> RuntimeId {
        self.id
    }

    /// Returns the database-key for the query that this thread is
    /// actively executing (if any).
    pub fn active_query(&self) -> Option<DatabaseKeyIndex> {
        self.local_state.active_query()
    }

    /// Read current value of the revision counter.
    #[inline]
    pub(crate) fn current_revision(&self) -> Revision {
        self.shared_state.revisions[0].load()
    }

    /// The revision in which values with durability `d` may have last
    /// changed.  For D0, this is just the current revision. But for
    /// higher levels of durability, this value may lag behind the
    /// current revision. If we encounter a value of durability Di,
    /// then, we can check this function to get a "bound" on when the
    /// value may have changed, which allows us to skip walking its
    /// dependencies.
    #[inline]
    pub(crate) fn last_changed_revision(&self, d: Durability) -> Revision {
        self.shared_state.revisions[d.index()].load()
    }

    /// Read current value of the revision counter.
    #[inline]
    pub(crate) fn pending_revision(&self) -> Revision {
        self.shared_state.pending_revision.load()
    }

    #[cold]
    pub(crate) fn unwind_cancelled(&self) {
        self.report_untracked_read();
        Cancelled::PendingWrite.throw();
    }

    /// Acquires the **global query write lock** (ensuring that no queries are
    /// executing) and then increments the current revision counter; invokes
    /// `op` with the global query write lock still held.
    ///
    /// While we wait to acquire the global query write lock, this method will
    /// also increment `pending_revision_increments`, thus signalling to queries
    /// that their results are "cancelled" and they should abort as expeditiously
    /// as possible.
    ///
    /// The `op` closure should actually perform the writes needed. It is given
    /// the new revision as an argument, and its return value indicates whether
    /// any pre-existing value was modified:
    ///
    /// - returning `None` means that no pre-existing value was modified (this
    ///   could occur e.g. when setting some key on an input that was never set
    ///   before)
    /// - returning `Some(d)` indicates that a pre-existing value was modified
    ///   and it had the durability `d`. This will update the records for when
    ///   values with each durability were modified.
    ///
    /// Note that, given our writer model, we can assume that only one thread is
    /// attempting to increment the global revision at a time.
    pub(crate) fn with_incremented_revision<F>(&mut self, op: F)
    where
        F: FnOnce(Revision) -> Option<Durability>,
    {
        tracing::debug!("increment_revision()");

        if !self.permits_increment() {
            panic!("increment_revision invoked during a query computation");
        }

        // Set the `pending_revision` field so that people
        // know current revision is cancelled.
        let current_revision = self.shared_state.pending_revision.fetch_then_increment();

        // To modify the revision, we need the lock.
        let shared_state = self.shared_state.clone();
        let _lock = shared_state.query_lock.write();

        let old_revision = self.shared_state.revisions[0].fetch_then_increment();
        assert_eq!(current_revision, old_revision);

        let new_revision = current_revision.next();

        debug!("increment_revision: incremented to {:?}", new_revision);

        if let Some(d) = op(new_revision) {
            for rev in &self.shared_state.revisions[1..=d.index()] {
                rev.store(new_revision);
            }
        }
    }

    pub(crate) fn permits_increment(&self) -> bool {
        self.revision_guard.is_none() && !self.local_state.query_in_progress()
    }

    #[inline]
    pub(crate) fn push_query(&self, database_key_index: DatabaseKeyIndex) -> ActiveQueryGuard<'_> {
        self.local_state.push_query(database_key_index)
    }

    /// Reports that the currently active query read the result from
    /// another query.
    ///
    /// Also checks whether the "cycle participant" flag is set on
    /// the current stack frame -- if so, panics with `CycleParticipant`
    /// value, which should be caught by the code executing the query.
    ///
    /// # Parameters
    ///
    /// - `database_key`: the query whose result was read
    /// - `changed_revision`: the last revision in which the result of that
    ///   query had changed
    pub(crate) fn report_query_read_and_unwind_if_cycle_resulted(
        &self,
        input: DatabaseKeyIndex,
        durability: Durability,
        changed_at: Revision,
    ) {
        self.local_state
            .report_query_read_and_unwind_if_cycle_resulted(input, durability, changed_at);
    }

    /// Reports that the query depends on some state unknown to salsa.
    ///
    /// Queries which report untracked reads will be re-executed in the next
    /// revision.
    pub fn report_untracked_read(&self) {
        self.local_state.report_untracked_read(self.current_revision());
    }

    /// Acts as though the current query had read an input with the given durability; this will force the current query's durability to be at most `durability`.
    ///
    /// This is mostly useful to control the durability level for [on-demand inputs](https://salsa-rs.github.io/salsa/common_patterns/on_demand_inputs.html).
    pub fn report_synthetic_read(&self, durability: Durability) {
        let changed_at = self.last_changed_revision(durability);
        self.local_state.report_synthetic_read(durability, changed_at);
    }

    /// Handles a cycle in the dependency graph that was detected when the
    /// current thread tried to block on `database_key_index` which is being
    /// executed by `to_id`. If this function returns, then `to_id` no longer
    /// depends on the current thread, and so we should continue executing
    /// as normal. Otherwise, the function will throw a `Cycle` which is expected
    /// to be caught by some frame on our stack. This occurs either if there is
    /// a frame on our stack with cycle recovery (possibly the top one!) or if there
    /// is no cycle recovery at all.
    fn unblock_cycle_and_maybe_throw(
        &self,
        db: &dyn Database,
        dg: &mut DependencyGraph,
        database_key_index: DatabaseKeyIndex,
        to_id: RuntimeId,
    ) {
        debug!("unblock_cycle_and_maybe_throw(database_key={:?})", database_key_index);

        let mut from_stack = self.local_state.take_query_stack();
        let from_id = self.id();

        // Make a "dummy stack frame". As we iterate through the cycle, we will collect the
        // inputs from each participant. Then, if we are participating in cycle recovery, we
        // will propagate those results to all participants.
        let mut cycle_query = ActiveQuery::new(database_key_index);

        // Identify the cycle participants:
        let cycle = {
            let mut v = vec![];
            dg.for_each_cycle_participant(
                from_id,
                &mut from_stack,
                database_key_index,
                to_id,
                |aqs| {
                    aqs.iter_mut().for_each(|aq| {
                        cycle_query.add_from(aq);
                        v.push(aq.database_key_index);
                    });
                },
            );

            // We want to give the participants in a deterministic order
            // (at least for this execution, not necessarily across executions),
            // no matter where it started on the stack. Find the minimum
            // key and rotate it to the front.
            let index = v.iter().position_min().unwrap_or_default();
            v.rotate_left(index);

            // No need to store extra memory.
            v.shrink_to_fit();

            Cycle::new(Arc::new(v))
        };
        debug!("cycle {:?}, cycle_query {:#?}", cycle.debug(db), cycle_query,);

        // We can remove the cycle participants from the list of dependencies;
        // they are a strongly connected component (SCC) and we only care about
        // dependencies to things outside the SCC that control whether it will
        // form again.
        cycle_query.remove_cycle_participants(&cycle);

        // Mark each cycle participant that has recovery set, along with
        // any frames that come after them on the same thread. Those frames
        // are going to be unwound so that fallback can occur.
        dg.for_each_cycle_participant(from_id, &mut from_stack, database_key_index, to_id, |aqs| {
            aqs.iter_mut()
                .skip_while(|aq| match db.cycle_recovery_strategy(aq.database_key_index) {
                    CycleRecoveryStrategy::Panic => true,
                    CycleRecoveryStrategy::Fallback => false,
                })
                .for_each(|aq| {
                    debug!("marking {:?} for fallback", aq.database_key_index.debug(db));
                    aq.take_inputs_from(&cycle_query);
                    assert!(aq.cycle.is_none());
                    aq.cycle = Some(cycle.clone());
                });
        });

        // Unblock every thread that has cycle recovery with a `WaitResult::Cycle`.
        // They will throw the cycle, which will be caught by the frame that has
        // cycle recovery so that it can execute that recovery.
        let (me_recovered, others_recovered) =
            dg.maybe_unblock_runtimes_in_cycle(from_id, &from_stack, database_key_index, to_id);

        self.local_state.restore_query_stack(from_stack);

        if me_recovered {
            // If the current thread has recovery, we want to throw
            // so that it can begin.
            cycle.throw()
        } else if others_recovered {
            // If other threads have recovery but we didn't: return and we will block on them.
        } else {
            // if nobody has recover, then we panic
            panic_any(cycle);
        }
    }

    /// Block until `other_id` completes executing `database_key`;
    /// panic or unwind in the case of a cycle.
    ///
    /// `query_mutex_guard` is the guard for the current query's state;
    /// it will be dropped after we have successfully registered the
    /// dependency.
    ///
    /// # Propagating panics
    ///
    /// If the thread `other_id` panics, then our thread is considered
    /// cancelled, so this function will panic with a `Cancelled` value.
    ///
    /// # Cycle handling
    ///
    /// If the thread `other_id` already depends on the current thread,
    /// and hence there is a cycle in the query graph, then this function
    /// will unwind instead of returning normally. The method of unwinding
    /// depends on the [`Self::mutual_cycle_recovery_strategy`]
    /// of the cycle participants:
    ///
    /// * [`CycleRecoveryStrategy::Panic`]: panic with the [`Cycle`] as the value.
    /// * [`CycleRecoveryStrategy::Fallback`]: initiate unwinding with [`CycleParticipant::unwind`].
    pub(crate) fn block_on_or_unwind<QueryMutexGuard>(
        &self,
        db: &dyn Database,
        database_key: DatabaseKeyIndex,
        other_id: RuntimeId,
        query_mutex_guard: QueryMutexGuard,
    ) {
        let mut dg = self.shared_state.dependency_graph.lock();

        if dg.depends_on(other_id, self.id()) {
            self.unblock_cycle_and_maybe_throw(db, &mut dg, database_key, other_id);

            // If the above fn returns, then (via cycle recovery) it has unblocked the
            // cycle, so we can continue.
            assert!(!dg.depends_on(other_id, self.id()));
        }

        db.salsa_event(Event {
            runtime_id: self.id(),
            kind: EventKind::WillBlockOn { other_runtime_id: other_id, database_key },
        });

        let stack = self.local_state.take_query_stack();

        let (stack, result) = DependencyGraph::block_on(
            dg,
            self.id(),
            database_key,
            other_id,
            stack,
            query_mutex_guard,
        );

        self.local_state.restore_query_stack(stack);

        match result {
            WaitResult::Completed => (),

            // If the other thread panicked, then we consider this thread
            // cancelled. The assumption is that the panic will be detected
            // by the other thread and responded to appropriately.
            WaitResult::Panicked => Cancelled::PropagatedPanic.throw(),

            WaitResult::Cycle(c) => c.throw(),
        }
    }

    /// Invoked when this runtime completed computing `database_key` with
    /// the given result `wait_result` (`wait_result` should be `None` if
    /// computing `database_key` panicked and could not complete).
    /// This function unblocks any dependent queries and allows them
    /// to continue executing.
    pub(crate) fn unblock_queries_blocked_on(
        &self,
        database_key: DatabaseKeyIndex,
        wait_result: WaitResult,
    ) {
        self.shared_state
            .dependency_graph
            .lock()
            .unblock_runtimes_blocked_on(database_key, wait_result);
    }
}

/// State that will be common to all threads (when we support multiple threads)
struct SharedState {
    /// Stores the next id to use for a snapshotted runtime (starts at 1).
    next_id: AtomicU32,

    /// Whenever derived queries are executing, they acquire this lock
    /// in read mode. Mutating inputs (and thus creating a new
    /// revision) requires a write lock (thus guaranteeing that no
    /// derived queries are in progress). Note that this is not needed
    /// to prevent **race conditions** -- the revision counter itself
    /// is stored in an `AtomicUsize` so it can be cheaply read
    /// without acquiring the lock.  Rather, the `query_lock` is used
    /// to ensure a higher-level consistency property.
    query_lock: RwLock<()>,

    /// This is typically equal to `revision` -- set to `revision+1`
    /// when a new revision is pending (which implies that the current
    /// revision is cancelled).
    pending_revision: AtomicRevision,

    /// Stores the "last change" revision for values of each Durability.
    /// This vector is always of length at least 1 (for Durability 0)
    /// but its total length depends on the number of Durabilities. The
    /// element at index 0 is special as it represents the "current
    /// revision".  In general, we have the invariant that revisions
    /// in here are *declining* -- that is, `revisions[i] >=
    /// revisions[i + 1]`, for all `i`. This is because when you
    /// modify a value with durability D, that implies that values
    /// with durability less than D may have changed too.
    revisions: [AtomicRevision; Durability::LEN],

    /// The dependency graph tracks which runtimes are blocked on one
    /// another, waiting for queries to terminate.
    dependency_graph: Mutex<DependencyGraph>,
}

impl std::panic::RefUnwindSafe for SharedState {}

impl Default for SharedState {
    fn default() -> Self {
        #[allow(clippy::declare_interior_mutable_const)]
        const START: AtomicRevision = AtomicRevision::start();
        SharedState {
            next_id: AtomicU32::new(1),
            query_lock: Default::default(),
            revisions: [START; Durability::LEN],
            pending_revision: START,
            dependency_graph: Default::default(),
        }
    }
}

impl std::fmt::Debug for SharedState {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let query_lock = if self.query_lock.is_locked_exclusive() {
            "<wlocked>"
        } else if self.query_lock.is_locked() {
            "<rlocked>"
        } else {
            "<unlocked>"
        };
        fmt.debug_struct("SharedState")
            .field("query_lock", &query_lock)
            .field("revisions", &self.revisions)
            .field("pending_revision", &self.pending_revision)
            .finish()
    }
}

#[derive(Debug)]
struct ActiveQuery {
    /// What query is executing
    database_key_index: DatabaseKeyIndex,

    /// Minimum durability of inputs observed so far.
    durability: Durability,

    /// Maximum revision of all inputs observed. If we observe an
    /// untracked read, this will be set to the most recent revision.
    changed_at: Revision,

    /// Set of subqueries that were accessed thus far, or `None` if
    /// there was an untracked the read.
    dependencies: Option<FxIndexSet<DatabaseKeyIndex>>,

    /// Stores the entire cycle, if one is found and this query is part of it.
    cycle: Option<Cycle>,
}

impl ActiveQuery {
    fn new(database_key_index: DatabaseKeyIndex) -> Self {
        ActiveQuery {
            database_key_index,
            durability: Durability::MAX,
            changed_at: Revision::start(),
            dependencies: Some(FxIndexSet::default()),
            cycle: None,
        }
    }

    fn add_read(&mut self, input: DatabaseKeyIndex, durability: Durability, revision: Revision) {
        if let Some(set) = &mut self.dependencies {
            set.insert(input);
        }

        self.durability = self.durability.min(durability);
        self.changed_at = self.changed_at.max(revision);
    }

    fn add_untracked_read(&mut self, changed_at: Revision) {
        self.dependencies = None;
        self.durability = Durability::LOW;
        self.changed_at = changed_at;
    }

    fn add_synthetic_read(&mut self, durability: Durability, revision: Revision) {
        self.dependencies = None;
        self.durability = self.durability.min(durability);
        self.changed_at = self.changed_at.max(revision);
    }

    pub(crate) fn revisions(&self) -> QueryRevisions {
        let (inputs, untracked) = match &self.dependencies {
            None => (None, true),

            Some(dependencies) => (
                if dependencies.is_empty() {
                    None
                } else {
                    Some(ThinArc::from_header_and_iter((), dependencies.iter().copied()))
                },
                false,
            ),
        };

        QueryRevisions {
            changed_at: self.changed_at,
            inputs,
            untracked,
            durability: self.durability,
        }
    }

    /// Adds any dependencies from `other` into `self`.
    /// Used during cycle recovery, see [`Runtime::create_cycle_error`].
    fn add_from(&mut self, other: &ActiveQuery) {
        self.changed_at = self.changed_at.max(other.changed_at);
        self.durability = self.durability.min(other.durability);
        if let Some(other_dependencies) = &other.dependencies {
            if let Some(my_dependencies) = &mut self.dependencies {
                my_dependencies.extend(other_dependencies.iter().copied());
            }
        } else {
            self.dependencies = None;
        }
    }

    /// Removes the participants in `cycle` from my dependencies.
    /// Used during cycle recovery, see [`Runtime::create_cycle_error`].
    fn remove_cycle_participants(&mut self, cycle: &Cycle) {
        if let Some(my_dependencies) = &mut self.dependencies {
            for p in cycle.participant_keys() {
                my_dependencies.swap_remove(&p);
            }
        }
    }

    /// Copy the changed-at, durability, and dependencies from `cycle_query`.
    /// Used during cycle recovery, see [`Runtime::create_cycle_error`].
    pub(crate) fn take_inputs_from(&mut self, cycle_query: &ActiveQuery) {
        self.changed_at = cycle_query.changed_at;
        self.durability = cycle_query.durability;
        self.dependencies.clone_from(&cycle_query.dependencies);
    }
}

/// A unique identifier for a particular runtime. Each time you create
/// a snapshot, a fresh `RuntimeId` is generated. Once a snapshot is
/// complete, its `RuntimeId` may potentially be re-used.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct RuntimeId {
    counter: u32,
}

#[derive(Clone, Debug)]
pub(crate) struct StampedValue<V> {
    pub(crate) value: V,
    pub(crate) durability: Durability,
    pub(crate) changed_at: Revision,
}

struct RevisionGuard {
    shared_state: Arc<SharedState>,
}

impl RevisionGuard {
    fn new(shared_state: &Arc<SharedState>) -> Self {
        // Subtle: we use a "recursive" lock here so that it is not an
        // error to acquire a read-lock when one is already held (this
        // happens when a query uses `snapshot` to spawn off parallel
        // workers, for example).
        //
        // This has the side-effect that we are responsible to ensure
        // that people contending for the write lock do not starve,
        // but this is what we achieve via the cancellation mechanism.
        //
        // (In particular, since we only ever have one "mutating
        // handle" to the database, the only contention for the global
        // query lock occurs when there are "futures" evaluating
        // queries in parallel, and those futures hold a read-lock
        // already, so the starvation problem is more about them bring
        // themselves to a close, versus preventing other people from
        // *starting* work).
        unsafe {
            shared_state.query_lock.raw().lock_shared_recursive();
        }

        Self { shared_state: shared_state.clone() }
    }
}

impl Drop for RevisionGuard {
    fn drop(&mut self) {
        // Release our read-lock without using RAII. As documented in
        // `Snapshot::new` above, this requires the unsafe keyword.
        unsafe {
            self.shared_state.query_lock.raw().unlock_shared();
        }
    }
}