ra_salsa/runtime.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
use crate::durability::Durability;
use crate::hash::FxIndexSet;
use crate::plumbing::CycleRecoveryStrategy;
use crate::revision::{AtomicRevision, Revision};
use crate::{Cancelled, Cycle, Database, DatabaseKeyIndex, Event, EventKind};
use itertools::Itertools;
use parking_lot::lock_api::{RawRwLock, RawRwLockRecursive};
use parking_lot::{Mutex, RwLock};
use std::hash::Hash;
use std::panic::panic_any;
use std::sync::atomic::{AtomicU32, Ordering};
use tracing::debug;
use triomphe::{Arc, ThinArc};
mod dependency_graph;
use dependency_graph::DependencyGraph;
pub(crate) mod local_state;
use local_state::LocalState;
use self::local_state::{ActiveQueryGuard, QueryRevisions};
/// The salsa runtime stores the storage for all queries as well as
/// tracking the query stack and dependencies between cycles.
///
/// Each new runtime you create (e.g., via `Runtime::new` or
/// `Runtime::default`) will have an independent set of query storage
/// associated with it. Normally, therefore, you only do this once, at
/// the start of your application.
pub struct Runtime {
/// Our unique runtime id.
id: RuntimeId,
/// If this is a "forked" runtime, then the `revision_guard` will
/// be `Some`; this guard holds a read-lock on the global query
/// lock.
revision_guard: Option<RevisionGuard>,
/// Local state that is specific to this runtime (thread).
local_state: LocalState,
/// Shared state that is accessible via all runtimes.
shared_state: Arc<SharedState>,
}
#[derive(Clone, Debug)]
pub(crate) enum WaitResult {
Completed,
Panicked,
Cycle(Cycle),
}
impl Default for Runtime {
fn default() -> Self {
Runtime {
id: RuntimeId { counter: 0 },
revision_guard: None,
shared_state: Default::default(),
local_state: Default::default(),
}
}
}
impl std::fmt::Debug for Runtime {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
fmt.debug_struct("Runtime")
.field("id", &self.id())
.field("forked", &self.revision_guard.is_some())
.field("shared_state", &self.shared_state)
.finish()
}
}
impl Runtime {
/// Create a new runtime; equivalent to `Self::default`. This is
/// used when creating a new database.
pub fn new() -> Self {
Self::default()
}
/// See [`crate::storage::Storage::snapshot`].
pub(crate) fn snapshot(&self) -> Self {
if self.local_state.query_in_progress() {
panic!("it is not legal to `snapshot` during a query (see salsa-rs/salsa#80)");
}
let revision_guard = RevisionGuard::new(&self.shared_state);
let id = RuntimeId { counter: self.shared_state.next_id.fetch_add(1, Ordering::SeqCst) };
Runtime {
id,
revision_guard: Some(revision_guard),
shared_state: self.shared_state.clone(),
local_state: Default::default(),
}
}
/// A "synthetic write" causes the system to act *as though* some
/// input of durability `durability` has changed. This is mostly
/// useful for profiling scenarios.
///
/// **WARNING:** Just like an ordinary write, this method triggers
/// cancellation. If you invoke it while a snapshot exists, it
/// will block until that snapshot is dropped -- if that snapshot
/// is owned by the current thread, this could trigger deadlock.
pub fn synthetic_write(&mut self, durability: Durability) {
self.with_incremented_revision(|_next_revision| Some(durability));
}
/// The unique identifier attached to this `SalsaRuntime`. Each
/// snapshotted runtime has a distinct identifier.
#[inline]
pub fn id(&self) -> RuntimeId {
self.id
}
/// Returns the database-key for the query that this thread is
/// actively executing (if any).
pub fn active_query(&self) -> Option<DatabaseKeyIndex> {
self.local_state.active_query()
}
/// Read current value of the revision counter.
#[inline]
pub(crate) fn current_revision(&self) -> Revision {
self.shared_state.revisions[0].load()
}
/// The revision in which values with durability `d` may have last
/// changed. For D0, this is just the current revision. But for
/// higher levels of durability, this value may lag behind the
/// current revision. If we encounter a value of durability Di,
/// then, we can check this function to get a "bound" on when the
/// value may have changed, which allows us to skip walking its
/// dependencies.
#[inline]
pub(crate) fn last_changed_revision(&self, d: Durability) -> Revision {
self.shared_state.revisions[d.index()].load()
}
/// Read current value of the revision counter.
#[inline]
pub(crate) fn pending_revision(&self) -> Revision {
self.shared_state.pending_revision.load()
}
#[cold]
pub(crate) fn unwind_cancelled(&self) {
self.report_untracked_read();
Cancelled::PendingWrite.throw();
}
/// Acquires the **global query write lock** (ensuring that no queries are
/// executing) and then increments the current revision counter; invokes
/// `op` with the global query write lock still held.
///
/// While we wait to acquire the global query write lock, this method will
/// also increment `pending_revision_increments`, thus signalling to queries
/// that their results are "cancelled" and they should abort as expeditiously
/// as possible.
///
/// The `op` closure should actually perform the writes needed. It is given
/// the new revision as an argument, and its return value indicates whether
/// any pre-existing value was modified:
///
/// - returning `None` means that no pre-existing value was modified (this
/// could occur e.g. when setting some key on an input that was never set
/// before)
/// - returning `Some(d)` indicates that a pre-existing value was modified
/// and it had the durability `d`. This will update the records for when
/// values with each durability were modified.
///
/// Note that, given our writer model, we can assume that only one thread is
/// attempting to increment the global revision at a time.
pub(crate) fn with_incremented_revision<F>(&mut self, op: F)
where
F: FnOnce(Revision) -> Option<Durability>,
{
tracing::debug!("increment_revision()");
if !self.permits_increment() {
panic!("increment_revision invoked during a query computation");
}
// Set the `pending_revision` field so that people
// know current revision is cancelled.
let current_revision = self.shared_state.pending_revision.fetch_then_increment();
// To modify the revision, we need the lock.
let shared_state = self.shared_state.clone();
let _lock = shared_state.query_lock.write();
let old_revision = self.shared_state.revisions[0].fetch_then_increment();
assert_eq!(current_revision, old_revision);
let new_revision = current_revision.next();
debug!("increment_revision: incremented to {:?}", new_revision);
if let Some(d) = op(new_revision) {
for rev in &self.shared_state.revisions[1..=d.index()] {
rev.store(new_revision);
}
}
}
pub(crate) fn permits_increment(&self) -> bool {
self.revision_guard.is_none() && !self.local_state.query_in_progress()
}
#[inline]
pub(crate) fn push_query(&self, database_key_index: DatabaseKeyIndex) -> ActiveQueryGuard<'_> {
self.local_state.push_query(database_key_index)
}
/// Reports that the currently active query read the result from
/// another query.
///
/// Also checks whether the "cycle participant" flag is set on
/// the current stack frame -- if so, panics with `CycleParticipant`
/// value, which should be caught by the code executing the query.
///
/// # Parameters
///
/// - `database_key`: the query whose result was read
/// - `changed_revision`: the last revision in which the result of that
/// query had changed
pub(crate) fn report_query_read_and_unwind_if_cycle_resulted(
&self,
input: DatabaseKeyIndex,
durability: Durability,
changed_at: Revision,
) {
self.local_state
.report_query_read_and_unwind_if_cycle_resulted(input, durability, changed_at);
}
/// Reports that the query depends on some state unknown to salsa.
///
/// Queries which report untracked reads will be re-executed in the next
/// revision.
pub fn report_untracked_read(&self) {
self.local_state.report_untracked_read(self.current_revision());
}
/// Acts as though the current query had read an input with the given durability; this will force the current query's durability to be at most `durability`.
///
/// This is mostly useful to control the durability level for [on-demand inputs](https://salsa-rs.github.io/salsa/common_patterns/on_demand_inputs.html).
pub fn report_synthetic_read(&self, durability: Durability) {
let changed_at = self.last_changed_revision(durability);
self.local_state.report_synthetic_read(durability, changed_at);
}
/// Handles a cycle in the dependency graph that was detected when the
/// current thread tried to block on `database_key_index` which is being
/// executed by `to_id`. If this function returns, then `to_id` no longer
/// depends on the current thread, and so we should continue executing
/// as normal. Otherwise, the function will throw a `Cycle` which is expected
/// to be caught by some frame on our stack. This occurs either if there is
/// a frame on our stack with cycle recovery (possibly the top one!) or if there
/// is no cycle recovery at all.
fn unblock_cycle_and_maybe_throw(
&self,
db: &dyn Database,
dg: &mut DependencyGraph,
database_key_index: DatabaseKeyIndex,
to_id: RuntimeId,
) {
debug!("unblock_cycle_and_maybe_throw(database_key={:?})", database_key_index);
let mut from_stack = self.local_state.take_query_stack();
let from_id = self.id();
// Make a "dummy stack frame". As we iterate through the cycle, we will collect the
// inputs from each participant. Then, if we are participating in cycle recovery, we
// will propagate those results to all participants.
let mut cycle_query = ActiveQuery::new(database_key_index);
// Identify the cycle participants:
let cycle = {
let mut v = vec![];
dg.for_each_cycle_participant(
from_id,
&mut from_stack,
database_key_index,
to_id,
|aqs| {
aqs.iter_mut().for_each(|aq| {
cycle_query.add_from(aq);
v.push(aq.database_key_index);
});
},
);
// We want to give the participants in a deterministic order
// (at least for this execution, not necessarily across executions),
// no matter where it started on the stack. Find the minimum
// key and rotate it to the front.
let index = v.iter().position_min().unwrap_or_default();
v.rotate_left(index);
// No need to store extra memory.
v.shrink_to_fit();
Cycle::new(Arc::new(v))
};
debug!("cycle {:?}, cycle_query {:#?}", cycle.debug(db), cycle_query,);
// We can remove the cycle participants from the list of dependencies;
// they are a strongly connected component (SCC) and we only care about
// dependencies to things outside the SCC that control whether it will
// form again.
cycle_query.remove_cycle_participants(&cycle);
// Mark each cycle participant that has recovery set, along with
// any frames that come after them on the same thread. Those frames
// are going to be unwound so that fallback can occur.
dg.for_each_cycle_participant(from_id, &mut from_stack, database_key_index, to_id, |aqs| {
aqs.iter_mut()
.skip_while(|aq| match db.cycle_recovery_strategy(aq.database_key_index) {
CycleRecoveryStrategy::Panic => true,
CycleRecoveryStrategy::Fallback => false,
})
.for_each(|aq| {
debug!("marking {:?} for fallback", aq.database_key_index.debug(db));
aq.take_inputs_from(&cycle_query);
assert!(aq.cycle.is_none());
aq.cycle = Some(cycle.clone());
});
});
// Unblock every thread that has cycle recovery with a `WaitResult::Cycle`.
// They will throw the cycle, which will be caught by the frame that has
// cycle recovery so that it can execute that recovery.
let (me_recovered, others_recovered) =
dg.maybe_unblock_runtimes_in_cycle(from_id, &from_stack, database_key_index, to_id);
self.local_state.restore_query_stack(from_stack);
if me_recovered {
// If the current thread has recovery, we want to throw
// so that it can begin.
cycle.throw()
} else if others_recovered {
// If other threads have recovery but we didn't: return and we will block on them.
} else {
// if nobody has recover, then we panic
panic_any(cycle);
}
}
/// Block until `other_id` completes executing `database_key`;
/// panic or unwind in the case of a cycle.
///
/// `query_mutex_guard` is the guard for the current query's state;
/// it will be dropped after we have successfully registered the
/// dependency.
///
/// # Propagating panics
///
/// If the thread `other_id` panics, then our thread is considered
/// cancelled, so this function will panic with a `Cancelled` value.
///
/// # Cycle handling
///
/// If the thread `other_id` already depends on the current thread,
/// and hence there is a cycle in the query graph, then this function
/// will unwind instead of returning normally. The method of unwinding
/// depends on the [`Self::mutual_cycle_recovery_strategy`]
/// of the cycle participants:
///
/// * [`CycleRecoveryStrategy::Panic`]: panic with the [`Cycle`] as the value.
/// * [`CycleRecoveryStrategy::Fallback`]: initiate unwinding with [`CycleParticipant::unwind`].
pub(crate) fn block_on_or_unwind<QueryMutexGuard>(
&self,
db: &dyn Database,
database_key: DatabaseKeyIndex,
other_id: RuntimeId,
query_mutex_guard: QueryMutexGuard,
) {
let mut dg = self.shared_state.dependency_graph.lock();
if dg.depends_on(other_id, self.id()) {
self.unblock_cycle_and_maybe_throw(db, &mut dg, database_key, other_id);
// If the above fn returns, then (via cycle recovery) it has unblocked the
// cycle, so we can continue.
assert!(!dg.depends_on(other_id, self.id()));
}
db.salsa_event(Event {
runtime_id: self.id(),
kind: EventKind::WillBlockOn { other_runtime_id: other_id, database_key },
});
let stack = self.local_state.take_query_stack();
let (stack, result) = DependencyGraph::block_on(
dg,
self.id(),
database_key,
other_id,
stack,
query_mutex_guard,
);
self.local_state.restore_query_stack(stack);
match result {
WaitResult::Completed => (),
// If the other thread panicked, then we consider this thread
// cancelled. The assumption is that the panic will be detected
// by the other thread and responded to appropriately.
WaitResult::Panicked => Cancelled::PropagatedPanic.throw(),
WaitResult::Cycle(c) => c.throw(),
}
}
/// Invoked when this runtime completed computing `database_key` with
/// the given result `wait_result` (`wait_result` should be `None` if
/// computing `database_key` panicked and could not complete).
/// This function unblocks any dependent queries and allows them
/// to continue executing.
pub(crate) fn unblock_queries_blocked_on(
&self,
database_key: DatabaseKeyIndex,
wait_result: WaitResult,
) {
self.shared_state
.dependency_graph
.lock()
.unblock_runtimes_blocked_on(database_key, wait_result);
}
}
/// State that will be common to all threads (when we support multiple threads)
struct SharedState {
/// Stores the next id to use for a snapshotted runtime (starts at 1).
next_id: AtomicU32,
/// Whenever derived queries are executing, they acquire this lock
/// in read mode. Mutating inputs (and thus creating a new
/// revision) requires a write lock (thus guaranteeing that no
/// derived queries are in progress). Note that this is not needed
/// to prevent **race conditions** -- the revision counter itself
/// is stored in an `AtomicUsize` so it can be cheaply read
/// without acquiring the lock. Rather, the `query_lock` is used
/// to ensure a higher-level consistency property.
query_lock: RwLock<()>,
/// This is typically equal to `revision` -- set to `revision+1`
/// when a new revision is pending (which implies that the current
/// revision is cancelled).
pending_revision: AtomicRevision,
/// Stores the "last change" revision for values of each Durability.
/// This vector is always of length at least 1 (for Durability 0)
/// but its total length depends on the number of Durabilities. The
/// element at index 0 is special as it represents the "current
/// revision". In general, we have the invariant that revisions
/// in here are *declining* -- that is, `revisions[i] >=
/// revisions[i + 1]`, for all `i`. This is because when you
/// modify a value with durability D, that implies that values
/// with durability less than D may have changed too.
revisions: [AtomicRevision; Durability::LEN],
/// The dependency graph tracks which runtimes are blocked on one
/// another, waiting for queries to terminate.
dependency_graph: Mutex<DependencyGraph>,
}
impl std::panic::RefUnwindSafe for SharedState {}
impl Default for SharedState {
fn default() -> Self {
#[allow(clippy::declare_interior_mutable_const)]
const START: AtomicRevision = AtomicRevision::start();
SharedState {
next_id: AtomicU32::new(1),
query_lock: Default::default(),
revisions: [START; Durability::LEN],
pending_revision: START,
dependency_graph: Default::default(),
}
}
}
impl std::fmt::Debug for SharedState {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let query_lock = if self.query_lock.is_locked_exclusive() {
"<wlocked>"
} else if self.query_lock.is_locked() {
"<rlocked>"
} else {
"<unlocked>"
};
fmt.debug_struct("SharedState")
.field("query_lock", &query_lock)
.field("revisions", &self.revisions)
.field("pending_revision", &self.pending_revision)
.finish()
}
}
#[derive(Debug)]
struct ActiveQuery {
/// What query is executing
database_key_index: DatabaseKeyIndex,
/// Minimum durability of inputs observed so far.
durability: Durability,
/// Maximum revision of all inputs observed. If we observe an
/// untracked read, this will be set to the most recent revision.
changed_at: Revision,
/// Set of subqueries that were accessed thus far, or `None` if
/// there was an untracked the read.
dependencies: Option<FxIndexSet<DatabaseKeyIndex>>,
/// Stores the entire cycle, if one is found and this query is part of it.
cycle: Option<Cycle>,
}
impl ActiveQuery {
fn new(database_key_index: DatabaseKeyIndex) -> Self {
ActiveQuery {
database_key_index,
durability: Durability::MAX,
changed_at: Revision::start(),
dependencies: Some(FxIndexSet::default()),
cycle: None,
}
}
fn add_read(&mut self, input: DatabaseKeyIndex, durability: Durability, revision: Revision) {
if let Some(set) = &mut self.dependencies {
set.insert(input);
}
self.durability = self.durability.min(durability);
self.changed_at = self.changed_at.max(revision);
}
fn add_untracked_read(&mut self, changed_at: Revision) {
self.dependencies = None;
self.durability = Durability::LOW;
self.changed_at = changed_at;
}
fn add_synthetic_read(&mut self, durability: Durability, revision: Revision) {
self.dependencies = None;
self.durability = self.durability.min(durability);
self.changed_at = self.changed_at.max(revision);
}
pub(crate) fn revisions(&self) -> QueryRevisions {
let (inputs, untracked) = match &self.dependencies {
None => (None, true),
Some(dependencies) => (
if dependencies.is_empty() {
None
} else {
Some(ThinArc::from_header_and_iter((), dependencies.iter().copied()))
},
false,
),
};
QueryRevisions {
changed_at: self.changed_at,
inputs,
untracked,
durability: self.durability,
}
}
/// Adds any dependencies from `other` into `self`.
/// Used during cycle recovery, see [`Runtime::create_cycle_error`].
fn add_from(&mut self, other: &ActiveQuery) {
self.changed_at = self.changed_at.max(other.changed_at);
self.durability = self.durability.min(other.durability);
if let Some(other_dependencies) = &other.dependencies {
if let Some(my_dependencies) = &mut self.dependencies {
my_dependencies.extend(other_dependencies.iter().copied());
}
} else {
self.dependencies = None;
}
}
/// Removes the participants in `cycle` from my dependencies.
/// Used during cycle recovery, see [`Runtime::create_cycle_error`].
fn remove_cycle_participants(&mut self, cycle: &Cycle) {
if let Some(my_dependencies) = &mut self.dependencies {
for p in cycle.participant_keys() {
my_dependencies.swap_remove(&p);
}
}
}
/// Copy the changed-at, durability, and dependencies from `cycle_query`.
/// Used during cycle recovery, see [`Runtime::create_cycle_error`].
pub(crate) fn take_inputs_from(&mut self, cycle_query: &ActiveQuery) {
self.changed_at = cycle_query.changed_at;
self.durability = cycle_query.durability;
self.dependencies.clone_from(&cycle_query.dependencies);
}
}
/// A unique identifier for a particular runtime. Each time you create
/// a snapshot, a fresh `RuntimeId` is generated. Once a snapshot is
/// complete, its `RuntimeId` may potentially be re-used.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct RuntimeId {
counter: u32,
}
#[derive(Clone, Debug)]
pub(crate) struct StampedValue<V> {
pub(crate) value: V,
pub(crate) durability: Durability,
pub(crate) changed_at: Revision,
}
struct RevisionGuard {
shared_state: Arc<SharedState>,
}
impl RevisionGuard {
fn new(shared_state: &Arc<SharedState>) -> Self {
// Subtle: we use a "recursive" lock here so that it is not an
// error to acquire a read-lock when one is already held (this
// happens when a query uses `snapshot` to spawn off parallel
// workers, for example).
//
// This has the side-effect that we are responsible to ensure
// that people contending for the write lock do not starve,
// but this is what we achieve via the cancellation mechanism.
//
// (In particular, since we only ever have one "mutating
// handle" to the database, the only contention for the global
// query lock occurs when there are "futures" evaluating
// queries in parallel, and those futures hold a read-lock
// already, so the starvation problem is more about them bring
// themselves to a close, versus preventing other people from
// *starting* work).
unsafe {
shared_state.query_lock.raw().lock_shared_recursive();
}
Self { shared_state: shared_state.clone() }
}
}
impl Drop for RevisionGuard {
fn drop(&mut self) {
// Release our read-lock without using RAII. As documented in
// `Snapshot::new` above, this requires the unsafe keyword.
unsafe {
self.shared_state.query_lock.raw().unlock_shared();
}
}
}