span/hygiene.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
//! Machinery for hygienic macros.
//!
//! Inspired by Matthew Flatt et al., “Macros That Work Together: Compile-Time Bindings, Partial
//! Expansion, and Definition Contexts,” *Journal of Functional Programming* 22, no. 2
//! (March 1, 2012): 181–216, <https://doi.org/10.1017/S0956796812000093>.
//!
//! Also see <https://rustc-dev-guide.rust-lang.org/macro-expansion.html#hygiene-and-hierarchies>
//!
//! # The Expansion Order Hierarchy
//!
//! `ExpnData` in rustc, rust-analyzer's version is [`MacroCallLoc`]. Traversing the hierarchy
//! upwards can be achieved by walking up [`MacroCallLoc::kind`]'s contained file id, as
//! [`MacroFile`]s are interned [`MacroCallLoc`]s.
//!
//! # The Macro Definition Hierarchy
//!
//! `SyntaxContextData` in rustc and rust-analyzer. Basically the same in both.
//!
//! # The Call-site Hierarchy
//!
//! `ExpnData::call_site` in rustc, [`MacroCallLoc::call_site`] in rust-analyzer.
use std::fmt;
#[cfg(not(feature = "ra-salsa"))]
use crate::InternId;
#[cfg(feature = "ra-salsa")]
use ra_salsa::{InternId, InternValue};
use crate::MacroCallId;
/// Interned [`SyntaxContextData`].
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SyntaxContextId(InternId);
impl fmt::Debug for SyntaxContextId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() {
write!(f, "{}", self.0.as_u32())
} else {
f.debug_tuple("SyntaxContextId").field(&self.0).finish()
}
}
}
#[cfg(feature = "ra-salsa")]
impl ra_salsa::InternKey for SyntaxContextId {
fn from_intern_id(v: ra_salsa::InternId) -> Self {
SyntaxContextId(v)
}
fn as_intern_id(&self) -> ra_salsa::InternId {
self.0
}
}
impl fmt::Display for SyntaxContextId {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.0.as_u32())
}
}
impl SyntaxContextId {
/// The root context, which is the parent of all other contexts. All [`FileId`]s have this context.
pub const ROOT: Self = SyntaxContextId(unsafe { InternId::new_unchecked(0) });
pub fn is_root(self) -> bool {
self == Self::ROOT
}
/// Deconstruct a `SyntaxContextId` into a raw `u32`.
/// This should only be used for deserialization purposes for the proc-macro server.
pub fn into_u32(self) -> u32 {
self.0.as_u32()
}
/// Constructs a `SyntaxContextId` from a raw `u32`.
/// This should only be used for serialization purposes for the proc-macro server.
pub fn from_u32(u32: u32) -> Self {
Self(InternId::from(u32))
}
}
/// A syntax context describes a hierarchy tracking order of macro definitions.
#[derive(Copy, Clone, Hash, PartialEq, Eq)]
pub struct SyntaxContextData {
/// Invariant: Only [`SyntaxContextId::ROOT`] has a [`None`] outer expansion.
// FIXME: The None case needs to encode the context crate id. We can encode that as the MSB of
// MacroCallId is reserved anyways so we can do bit tagging here just fine.
// The bigger issue is that this will cause interning to now create completely separate chains
// per crate. Though that is likely not a problem as `MacroCallId`s are already crate calling dependent.
pub outer_expn: Option<MacroCallId>,
pub outer_transparency: Transparency,
pub parent: SyntaxContextId,
/// This context, but with all transparent and semi-transparent expansions filtered away.
pub opaque: SyntaxContextId,
/// This context, but with all transparent expansions filtered away.
pub opaque_and_semitransparent: SyntaxContextId,
}
#[cfg(feature = "ra-salsa")]
impl InternValue for SyntaxContextData {
type Key = (SyntaxContextId, Option<MacroCallId>, Transparency);
fn into_key(&self) -> Self::Key {
(self.parent, self.outer_expn, self.outer_transparency)
}
}
impl std::fmt::Debug for SyntaxContextData {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SyntaxContextData")
.field("outer_expn", &self.outer_expn)
.field("outer_transparency", &self.outer_transparency)
.field("parent", &self.parent)
.field("opaque", &self.opaque)
.field("opaque_and_semitransparent", &self.opaque_and_semitransparent)
.finish()
}
}
impl SyntaxContextData {
pub fn root() -> Self {
SyntaxContextData {
outer_expn: None,
outer_transparency: Transparency::Opaque,
parent: SyntaxContextId::ROOT,
opaque: SyntaxContextId::ROOT,
opaque_and_semitransparent: SyntaxContextId::ROOT,
}
}
}
/// A property of a macro expansion that determines how identifiers
/// produced by that expansion are resolved.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Hash, Debug)]
pub enum Transparency {
/// Identifier produced by a transparent expansion is always resolved at call-site.
/// Call-site spans in procedural macros, hygiene opt-out in `macro` should use this.
Transparent,
/// Identifier produced by a semi-transparent expansion may be resolved
/// either at call-site or at definition-site.
/// If it's a local variable, label or `$crate` then it's resolved at def-site.
/// Otherwise it's resolved at call-site.
/// `macro_rules` macros behave like this, built-in macros currently behave like this too,
/// but that's an implementation detail.
SemiTransparent,
/// Identifier produced by an opaque expansion is always resolved at definition-site.
/// Def-site spans in procedural macros, identifiers from `macro` by default use this.
Opaque,
}
impl Transparency {
/// Returns `true` if the transparency is [`Opaque`].
///
/// [`Opaque`]: Transparency::Opaque
pub fn is_opaque(&self) -> bool {
matches!(self, Self::Opaque)
}
}