syntax/syntax_editor/
mapping.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
//! Maps syntax elements through disjoint syntax nodes.
//!
//! [`SyntaxMappingBuilder`] should be used to create mappings to add to a [`SyntaxEditor`]

use itertools::Itertools;
use rustc_hash::FxHashMap;

use crate::{SyntaxElement, SyntaxNode};

#[derive(Debug, Default)]
pub struct SyntaxMapping {
    // important information to keep track of:
    // node -> node
    // token -> token (implicit in mappings)
    // input parent -> output parent (for deep lookups)

    // mappings ->  parents
    entry_parents: Vec<SyntaxNode>,
    node_mappings: FxHashMap<SyntaxNode, MappingEntry>,
}

impl SyntaxMapping {
    pub fn new() -> Self {
        Self::default()
    }

    /// Like [`SyntaxMapping::upmap_child`] but for syntax elements.
    pub fn upmap_child_element(
        &self,
        child: &SyntaxElement,
        input_ancestor: &SyntaxNode,
        output_ancestor: &SyntaxNode,
    ) -> Result<SyntaxElement, MissingMapping> {
        match child {
            SyntaxElement::Node(node) => {
                self.upmap_child(node, input_ancestor, output_ancestor).map(SyntaxElement::Node)
            }
            SyntaxElement::Token(token) => {
                let upmap_parent =
                    self.upmap_child(&token.parent().unwrap(), input_ancestor, output_ancestor)?;

                let element = upmap_parent.children_with_tokens().nth(token.index()).unwrap();
                debug_assert!(
                    element.as_token().is_some_and(|it| it.kind() == token.kind()),
                    "token upmapping mapped to the wrong node ({token:?} -> {element:?})"
                );

                Ok(element)
            }
        }
    }

    /// Maps a child node of the input ancestor to the corresponding node in
    /// the output ancestor.
    pub fn upmap_child(
        &self,
        child: &SyntaxNode,
        input_ancestor: &SyntaxNode,
        output_ancestor: &SyntaxNode,
    ) -> Result<SyntaxNode, MissingMapping> {
        debug_assert!(
            child == input_ancestor
                || child.ancestors().any(|ancestor| &ancestor == input_ancestor)
        );

        // Build a list mapping up to the first mappable ancestor
        let to_first_upmap = if child != input_ancestor {
            std::iter::successors(Some((child.index(), child.clone())), |(_, current)| {
                let parent = current.parent().unwrap();

                if &parent == input_ancestor {
                    return None;
                }

                Some((parent.index(), parent))
            })
            .map(|(i, _)| i)
            .collect::<Vec<_>>()
        } else {
            vec![]
        };

        // Progressively up-map the input ancestor until we get to the output ancestor
        let to_output_ancestor = if input_ancestor != output_ancestor {
            self.upmap_to_ancestor(input_ancestor, output_ancestor)?
        } else {
            vec![]
        };

        let to_map_down =
            to_output_ancestor.into_iter().rev().chain(to_first_upmap.into_iter().rev());

        let mut target = output_ancestor.clone();

        for index in to_map_down {
            target = target
                .children_with_tokens()
                .nth(index)
                .and_then(|it| it.into_node())
                .expect("equivalent ancestor node should be present in target tree");
        }

        debug_assert_eq!(child.kind(), target.kind());

        Ok(target)
    }

    fn upmap_to_ancestor(
        &self,
        input_ancestor: &SyntaxNode,
        output_ancestor: &SyntaxNode,
    ) -> Result<Vec<usize>, MissingMapping> {
        let mut current =
            self.upmap_node_single(input_ancestor).unwrap_or_else(|| input_ancestor.clone());
        let mut upmap_chain = vec![current.index()];

        loop {
            let Some(parent) = current.parent() else { break };

            if &parent == output_ancestor {
                return Ok(upmap_chain);
            }

            current = match self.upmap_node_single(&parent) {
                Some(next) => next,
                None => parent,
            };
            upmap_chain.push(current.index());
        }

        Err(MissingMapping(current))
    }

    pub fn upmap_element(
        &self,
        input: &SyntaxElement,
        output_root: &SyntaxNode,
    ) -> Option<Result<SyntaxElement, MissingMapping>> {
        match input {
            SyntaxElement::Node(node) => {
                Some(self.upmap_node(node, output_root)?.map(SyntaxElement::Node))
            }
            SyntaxElement::Token(token) => {
                let upmap_parent = match self.upmap_node(&token.parent().unwrap(), output_root)? {
                    Ok(it) => it,
                    Err(err) => return Some(Err(err)),
                };

                let element = upmap_parent.children_with_tokens().nth(token.index()).unwrap();
                debug_assert!(
                    element.as_token().is_some_and(|it| it.kind() == token.kind()),
                    "token upmapping mapped to the wrong node ({token:?} -> {element:?})"
                );

                Some(Ok(element))
            }
        }
    }

    pub fn upmap_node(
        &self,
        input: &SyntaxNode,
        output_root: &SyntaxNode,
    ) -> Option<Result<SyntaxNode, MissingMapping>> {
        // Try to follow the mapping tree, if it exists
        let input_mapping = self.upmap_node_single(input);
        let input_ancestor =
            input.ancestors().find_map(|ancestor| self.upmap_node_single(&ancestor));

        match (input_mapping, input_ancestor) {
            (Some(input_mapping), _) => {
                // A mapping exists at the input, follow along the tree
                Some(self.upmap_child(&input_mapping, &input_mapping, output_root))
            }
            (None, Some(input_ancestor)) => {
                // A mapping exists at an ancestor, follow along the tree
                Some(self.upmap_child(input, &input_ancestor, output_root))
            }
            (None, None) => {
                // No mapping exists at all, is the same position in the final tree
                None
            }
        }
    }

    pub fn merge(&mut self, mut other: SyntaxMapping) {
        // Remap other's entry parents to be after the current list of entry parents
        let remap_base: u32 = self.entry_parents.len().try_into().unwrap();

        self.entry_parents.append(&mut other.entry_parents);
        self.node_mappings.extend(other.node_mappings.into_iter().map(|(node, entry)| {
            (node, MappingEntry { parent: entry.parent + remap_base, ..entry })
        }));
    }

    /// Follows the input one step along the syntax mapping tree
    fn upmap_node_single(&self, input: &SyntaxNode) -> Option<SyntaxNode> {
        let MappingEntry { parent, child_slot } = self.node_mappings.get(input)?;

        let output = self.entry_parents[*parent as usize]
            .children_with_tokens()
            .nth(*child_slot as usize)
            .and_then(SyntaxElement::into_node)
            .unwrap();

        debug_assert_eq!(input.kind(), output.kind());
        Some(output)
    }

    pub fn add_mapping(&mut self, syntax_mapping: SyntaxMappingBuilder) {
        let SyntaxMappingBuilder { parent_node, node_mappings } = syntax_mapping;

        let parent_entry: u32 = self.entry_parents.len().try_into().unwrap();
        self.entry_parents.push(parent_node);

        let node_entries = node_mappings
            .into_iter()
            .map(|(node, slot)| (node, MappingEntry { parent: parent_entry, child_slot: slot }));

        self.node_mappings.extend(node_entries);
    }
}

#[derive(Debug)]
pub struct SyntaxMappingBuilder {
    parent_node: SyntaxNode,
    node_mappings: Vec<(SyntaxNode, u32)>,
}

impl SyntaxMappingBuilder {
    pub fn new(parent_node: SyntaxNode) -> Self {
        Self { parent_node, node_mappings: vec![] }
    }

    pub fn map_node(&mut self, input: SyntaxNode, output: SyntaxNode) {
        debug_assert_eq!(output.parent().as_ref(), Some(&self.parent_node));
        self.node_mappings.push((input, output.index() as u32));
    }

    pub fn map_children(
        &mut self,
        input: impl Iterator<Item = SyntaxNode>,
        output: impl Iterator<Item = SyntaxNode>,
    ) {
        for pairs in input.zip_longest(output) {
            let (input, output) = match pairs {
                itertools::EitherOrBoth::Both(l, r) => (l, r),
                itertools::EitherOrBoth::Left(_) => {
                    unreachable!("mapping more input nodes than there are output nodes")
                }
                itertools::EitherOrBoth::Right(_) => break,
            };

            self.map_node(input, output);
        }
    }

    pub fn finish(self, mappings: &mut SyntaxMapping) {
        mappings.add_mapping(self);
    }
}

#[derive(Debug)]
pub struct MissingMapping(pub SyntaxNode);

#[derive(Debug, Clone, Copy)]
struct MappingEntry {
    parent: u32,
    child_slot: u32,
}