Parsing
Formality's #[term]
and #[grammar]
attributes let you specify the grammar that will be used to parse your structs/enums.
For structs, there is a single grammar, specified as part of the term:
#![allow(unused)] fn main() { #[term( /* grammar here */ )] struct MyStruct { } }
For enums, the grammar is placed in #[grammar]
attributes on each variant:
#![allow(unused)] fn main() { #[term] enum MyEnum { #[grammar( /* grammar here */ )] Foo(...), } }
Ambiguity and greedy parsing
When parsing an enum there will be multiple possibilities. We will attempt to parse them all. If more than one succeeds, the parser will attempt to resolve the ambiguity by looking for the longest match. However, we don't just consider the number of characters, we look for a reduction prefix:
- When parsing, we track the list of things we had to parse. If there are two variants at the same precedence level, but one of them had to parse strictly more things than the other and in the same way, we'll prefer the longer one. So for example if one variant parsed a
Ty
and the other parsed aTy Ty
, we'd take theTy Ty
.- When considering whether a reduction is "significant", we take casts into account. See
ActiveVariant::mark_as_cast_variant
for a more detailed explanation and set of examples.
- When considering whether a reduction is "significant", we take casts into account. See
Precedence and left-recursive grammars
We support left-recursive grammars like this one from the parse-torture-tests
:
#![allow(unused)] fn main() { #[term] pub enum Path { #[cast] Id(Id), #[grammar($v0 . $v1)] Field(Arc<Path>, Id), #[grammar($v0 [ $v1 ])] Index(Arc<Path>, Arc<Path>), } formality_core::id!(Id); }
We also support ambiguous grammars. For example, you can code up arithmetic expressions like this:
#![allow(unused)] fn main() { #[term] pub enum Expr { #[cast] Id(Id), #[grammar($v0 + $v1)] #[precedence(1)] Add(Arc<Expr>, Arc<Expr>), #[grammar($v0 * $v1)] #[precedence(2)] Mul(Arc<Expr>, Arc<Expr>), } formality_core::id!(Id); }
When specifying the #[precedence]
of a variant, the default is left-associativity, which can be written more explicitly as #[precedence(L, left)]
. If you prefer, you can specify right-associativity (#[precedence(L, right)]
) or non-associativity #[precedence(L, none)]
. This affects how things of the same level are parsed:
1 + 1 + 1
when left-associative is(1 + 1) + 1
1 + 1 + 1
when right-associative is1 + (1 + 1)
1 + 1 + 1
when none-associative is an error.
Symbols
A grammar consists of a series of symbols. Each symbol matches some text in the input string. Symbols come in two varieties:
- Most things are terminals or tokens: this means they just match themselves:
- For example, the
*
in#[grammar($v0 * $v1)]
is a terminal, and it means to parse a*
from the input. - Delimeters are accepted but must be matched, e.g.,
( /* tokens */ )
or[ /* tokens */ ]
.
- For example, the
- Things beginning with
$
are nonterminals -- they parse the contents of a field. The grammar for a field is generally determined from its type.- If fields have names, then
$field
should name the field. - For position fields (e.g., the T and U in
Mul(Expr, Expr)
), use$v0
,$v1
, etc. - Exception:
$$
is treated as the terminal'$'
.
- If fields have names, then
- Nonterminals have various modes:
$field
-- just parse the field's type$*field
-- the field must be a collection ofT
(e.g.,Vec<T>
,Set<T>
) -- parse any number ofT
instances. Something like[ $*field ]
would parse[f1 f2 f3]
, assumingf1
,f2
, andf3
are valid values forfield
.$,field
-- similar to the above, but uses a comma separated list (with optional trailing comma). So[ $,field ]
will parse something like[f1, f2, f3]
.$?field
-- will parsefield
and useDefault::default()
value if not present.$<field>
-- parse<E1, E2, E3>
, wherefield
is a collection ofE
$<?field>
-- parse<E1, E2, E3>
, wherefield
is a collection ofE
, but accept empty string as empty vector$(field)
-- parse(E1, E2, E3)
, wherefield
is a collection ofE
$(?field)
-- parse(E1, E2, E3)
, wherefield
is a collection ofE
, but accept empty string as empty vector$[field]
-- parse[E1, E2, E3]
, wherefield
is a collection ofE
$[?field]
-- parse[E1, E2, E3]
, wherefield
is a collection ofE
, but accept empty string as empty vector${field}
-- parse{E1, E2, E3}
, wherefield
is a collection ofE
${?field}
-- parse{E1, E2, E3}
, wherefield
is a collection ofE
, but accept empty string as empty vector$:guard <nonterminal>
-- parses<nonterminal>
but only if the keywordguard
is present. For example,$:where $,where_clauses
would parsewhere WhereClause1, WhereClause2, WhereClause3
but would also accept nothing (in which case, you would get an empty vector).
Greediness
Parsing is generally greedy. So $*x
and $,x
, for example, consume as many entries as they can. Typically this works best if x
begins with some symbol that indicates whether it is present.
Default grammar
If no grammar is supplied, the default grammar is determined as follows:
- If a
#[cast]
or#[variable]
annotation is present, then the default grammar is just$v0
. - Otherwise, the default grammar is the name of the type (for structs) or variant (for enums), followed by
()
, with the values for the fields in order. SoMul(Expr, Expr)
would have a default grammarmul($v0, $v1)
.
Customizing the parse
If you prefer, you can customize the parse by annotating your term with #[customize(parse)]
. In the Rust case, for example, the parsing of RigidTy
is customized (as is the debug impl):
#![allow(unused)] fn main() { #[term((rigid $name $*parameters))] #[customize(parse, debug)] pub struct RigidTy { pub name: RigidName, pub parameters: Parameters, } }
You must then supply an impl of Parse
yourself. Because Parse
is a trait alias, you actually want to implement CoreParse<L>
for your language type L
. Inside the code you will want to instantiate a Parser
and then invoke parse_variant
for every variant, finally invoking finish
.
In the Rust code, the impl for RigidTy
looks as follows:
#![allow(unused)] fn main() { // Implement custom parsing for rigid types. impl CoreParse<Rust> for RigidTy { fn parse<'t>(scope: &Scope<Rust>, text: &'t str) -> ParseResult<'t, Self> { Parser::multi_variant(scope, text, "RigidTy", |parser| { // Parse a `ScalarId` (and upcast it to `RigidTy`) with the highest // precedence. If someone writes `u8`, we always interpret it as a // scalar-id. parser.parse_variant_cast::<ScalarId>(Precedence::default()); // Parse something like `Id<...>` as an ADT. parser.parse_variant("Adt", Precedence::default(), |p| { // Don't accept scalar-ids as Adt names. p.reject_nonterminal::<ScalarId>()?; let name: AdtId = p.nonterminal()?; let parameters: Vec<Parameter> = parse_parameters(p)?; Ok(RigidTy { name: name.upcast(), parameters, }) }); // Parse `&` parser.parse_variant("Ref", Precedence::default(), |p| { p.expect_char('&')?; let lt: Lt = p.nonterminal()?; let ty: Ty = p.nonterminal()?; Ok(RigidTy { name: RigidName::Ref(RefKind::Shared), parameters: seq![lt.upcast(), ty.upcast()], }) }); parser.parse_variant("RefMut", Precedence::default(), |p| { p.expect_char('&')?; p.expect_keyword("mut")?; let lt: Lt = p.nonterminal()?; let ty: Ty = p.nonterminal()?; Ok(RigidTy { name: RigidName::Ref(RefKind::Mut), parameters: seq![lt.upcast(), ty.upcast()], }) }); parser.parse_variant("Tuple", Precedence::default(), |p| { p.expect_char('(')?; p.reject_custom_keywords(&["alias", "rigid", "predicate"])?; let types: Vec<Ty> = p.comma_nonterminal()?; p.expect_char(')')?; let name = RigidName::Tuple(types.len()); Ok(RigidTy { name, parameters: types.upcast(), }) }); }) } } }