pub struct Ty<'db>(/* private fields */);
Implementations§
Source§impl Ty<'static>
impl Ty<'static>
pub fn ingredient<Db>(db: &Db) -> &IngredientImpl<Self>where
Db: ?Sized + Database,
Source§impl<'db> Ty<'db>
impl<'db> Ty<'db>
Source§impl<'db> Ty<'db>
impl<'db> Ty<'db>
pub fn new(interner: DbInterner<'db>, kind: TyKind<'db>) -> Self
pub fn inner(&self) -> &WithCachedTypeInfo<TyKind<'db>>
pub fn new_param( interner: DbInterner<'db>, id: TypeParamId, index: u32, name: Symbol, ) -> Self
pub fn new_placeholder( interner: DbInterner<'db>, placeholder: PlaceholderTy, ) -> Self
pub fn new_infer(interner: DbInterner<'db>, infer: InferTy) -> Self
pub fn new_int_var(interner: DbInterner<'db>, v: IntVid) -> Self
pub fn new_float_var(interner: DbInterner<'db>, v: FloatVid) -> Self
pub fn new_int(interner: DbInterner<'db>, i: IntTy) -> Self
pub fn new_uint(interner: DbInterner<'db>, ui: UintTy) -> Self
pub fn new_float(interner: DbInterner<'db>, f: FloatTy) -> Self
pub fn new_fresh(interner: DbInterner<'db>, n: u32) -> Self
pub fn new_fresh_int(interner: DbInterner<'db>, n: u32) -> Self
pub fn new_fresh_float(interner: DbInterner<'db>, n: u32) -> Self
pub fn new_empty_tuple(interner: DbInterner<'db>) -> Self
Sourcepub fn primitive_size(self, interner: DbInterner<'db>) -> Size
pub fn primitive_size(self, interner: DbInterner<'db>) -> Size
Returns the Size
for primitive types (bool, uint, int, char, float).
pub fn int_size_and_signed(self, interner: DbInterner<'db>) -> (Size, bool)
pub fn walk(self) -> TypeWalker<DbInterner<'db>>
Sourcepub fn has_trivial_sizedness(
self,
tcx: DbInterner<'db>,
sizedness: SizedTraitKind,
) -> bool
pub fn has_trivial_sizedness( self, tcx: DbInterner<'db>, sizedness: SizedTraitKind, ) -> bool
Fast path helper for testing if a type is Sized
or MetaSized
.
Returning true means the type is known to implement the sizedness trait. Returning false
means nothing – could be sized, might not be.
Note that we could never rely on the fact that a type such as [_]
is trivially !Sized
because we could be in a type environment with a bound such as [_]: Copy
. A function with
such a bound obviously never can be called, but that doesn’t mean it shouldn’t typecheck.
This is why this method doesn’t return Option<bool>
.
Sourcepub fn is_trivially_pure_clone_copy(self) -> bool
pub fn is_trivially_pure_clone_copy(self) -> bool
Fast path helper for primitives which are always Copy
and which
have a side-effect-free Clone
impl.
Returning true means the type is known to be pure and Copy+Clone
.
Returning false
means nothing – could be Copy
, might not be.
This is mostly useful for optimizations, as these are the types on which we can replace cloning with dereferencing.
pub fn is_trivially_wf(self, tcx: DbInterner<'db>) -> bool
Trait Implementations§
Source§impl<'db> ChalkToNextSolver<'db, Ty<'db>> for Ty<Interner>
impl<'db> ChalkToNextSolver<'db, Ty<'db>> for Ty<Interner>
fn to_nextsolver(&self, interner: DbInterner<'db>) -> Ty<'db>
Source§impl<'db> From<Ty<'db>> for GenericArg<'db>
impl<'db> From<Ty<'db>> for GenericArg<'db>
Source§impl<'db> HirDisplay for Ty<'db>
impl<'db> HirDisplay for Ty<'db>
fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError>
Source§fn into_displayable<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
limited_size: Option<usize>,
omit_verbose_types: bool,
display_target: DisplayTarget,
display_kind: DisplayKind,
closure_style: ClosureStyle,
show_container_bounds: bool,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
fn into_displayable<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
limited_size: Option<usize>,
omit_verbose_types: bool,
display_target: DisplayTarget,
display_kind: DisplayKind,
closure_style: ClosureStyle,
show_container_bounds: bool,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
Display
able type that is human-readable.Source§fn display<'a>(
&'a self,
db: &'a dyn HirDatabase,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
fn display<'a>(
&'a self,
db: &'a dyn HirDatabase,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
Display
able type that is human-readable.
Use this for showing types to the user (e.g. diagnostics)Source§fn display_truncated<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
fn display_truncated<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
Display
able type that is human-readable and tries to be succinct.
Use this for showing types to the user where space is constrained (e.g. doc popups)Source§fn display_limited<'a>(
&'a self,
db: &'a dyn HirDatabase,
limited_size: Option<usize>,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
fn display_limited<'a>(
&'a self,
db: &'a dyn HirDatabase,
limited_size: Option<usize>,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
Display
able type that is human-readable and tries to limit the number of items inside.
Use this for showing definitions which may contain too many items, like trait
, struct
, enum
Source§fn display_source_code<'a>(
&'a self,
db: &'a dyn HirDatabase,
module_id: ModuleId,
allow_opaque: bool,
) -> Result<String, DisplaySourceCodeError>
fn display_source_code<'a>( &'a self, db: &'a dyn HirDatabase, module_id: ModuleId, allow_opaque: bool, ) -> Result<String, DisplaySourceCodeError>
self
that can be inserted into the given module.
Use this when generating code (e.g. assists)Source§fn display_test<'a>(
&'a self,
db: &'a dyn HirDatabase,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
fn display_test<'a>(
&'a self,
db: &'a dyn HirDatabase,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
self
for test purposesSource§fn display_with_container_bounds<'a>(
&'a self,
db: &'a dyn HirDatabase,
show_container_bounds: bool,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
fn display_with_container_bounds<'a>(
&'a self,
db: &'a dyn HirDatabase,
show_container_bounds: bool,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>where
Self: Sized,
self
that shows the constraint from
the container for functionsSource§impl<'db> Relate<DbInterner<'db>> for Ty<'db>
impl<'db> Relate<DbInterner<'db>> for Ty<'db>
fn relate<R: TypeRelation<DbInterner<'db>>>( relation: &mut R, a: Self, b: Self, ) -> RelateResult<DbInterner<'db>, Self>
Source§impl<'db> Ty<DbInterner<'db>> for Ty<'db>
impl<'db> Ty<DbInterner<'db>> for Ty<'db>
fn new_unit(interner: DbInterner<'db>) -> Self
fn new_bool(interner: DbInterner<'db>) -> Self
fn new_u8(interner: DbInterner<'db>) -> Self
fn new_usize(interner: DbInterner<'db>) -> Self
fn new_infer(interner: DbInterner<'db>, var: InferTy) -> Self
fn new_var(interner: DbInterner<'db>, var: TyVid) -> Self
fn new_param(interner: DbInterner<'db>, param: ParamTy) -> Self
fn new_placeholder(interner: DbInterner<'db>, param: PlaceholderTy) -> Self
fn new_bound( interner: DbInterner<'db>, debruijn: DebruijnIndex, var: BoundTy, ) -> Self
fn new_anon_bound( interner: DbInterner<'db>, debruijn: DebruijnIndex, var: BoundVar, ) -> Self
fn new_alias( interner: DbInterner<'db>, kind: AliasTyKind, alias_ty: AliasTy<DbInterner<'db>>, ) -> Self
fn new_error(interner: DbInterner<'db>, guar: ErrorGuaranteed) -> Self
fn new_adt( interner: DbInterner<'db>, adt_def: <DbInterner<'db> as Interner>::AdtDef, args: GenericArgs<'db>, ) -> Self
fn new_foreign( interner: DbInterner<'db>, def_id: <DbInterner<'db> as Interner>::DefId, ) -> Self
fn new_dynamic( interner: DbInterner<'db>, preds: <DbInterner<'db> as Interner>::BoundExistentialPredicates, region: <DbInterner<'db> as Interner>::Region, kind: DynKind, ) -> Self
fn new_coroutine( interner: DbInterner<'db>, def_id: <DbInterner<'db> as Interner>::DefId, args: <DbInterner<'db> as Interner>::GenericArgs, ) -> Self
fn new_coroutine_closure( interner: DbInterner<'db>, def_id: <DbInterner<'db> as Interner>::DefId, args: <DbInterner<'db> as Interner>::GenericArgs, ) -> Self
fn new_closure( interner: DbInterner<'db>, def_id: <DbInterner<'db> as Interner>::DefId, args: <DbInterner<'db> as Interner>::GenericArgs, ) -> Self
fn new_coroutine_witness( interner: DbInterner<'db>, def_id: <DbInterner<'db> as Interner>::DefId, args: <DbInterner<'db> as Interner>::GenericArgs, ) -> Self
fn new_ptr(interner: DbInterner<'db>, ty: Self, mutbl: Mutability) -> Self
fn new_ref( interner: DbInterner<'db>, region: <DbInterner<'db> as Interner>::Region, ty: Self, mutbl: Mutability, ) -> Self
fn new_array_with_const_len( interner: DbInterner<'db>, ty: Self, len: <DbInterner<'db> as Interner>::Const, ) -> Self
fn new_slice(interner: DbInterner<'db>, ty: Self) -> Self
fn new_tup( interner: DbInterner<'db>, tys: &[<DbInterner<'db> as Interner>::Ty], ) -> Self
fn new_tup_from_iter<It, T>(interner: DbInterner<'db>, iter: It) -> T::Outputwhere
It: Iterator<Item = T>,
T: CollectAndApply<Self, Self>,
fn new_fn_def( interner: DbInterner<'db>, def_id: <DbInterner<'db> as Interner>::DefId, args: <DbInterner<'db> as Interner>::GenericArgs, ) -> Self
fn new_fn_ptr( interner: DbInterner<'db>, sig: Binder<DbInterner<'db>, FnSig<DbInterner<'db>>>, ) -> Self
fn new_pat( interner: DbInterner<'db>, ty: Self, pat: <DbInterner<'db> as Interner>::Pat, ) -> Self
fn tuple_fields(self) -> <DbInterner<'db> as Interner>::Tys
fn to_opt_closure_kind(self) -> Option<ClosureKind>
fn from_closure_kind(interner: DbInterner<'db>, kind: ClosureKind) -> Self
fn from_coroutine_closure_kind( interner: DbInterner<'db>, kind: ClosureKind, ) -> Self
fn discriminant_ty( self, interner: DbInterner<'db>, ) -> <DbInterner<'db> as Interner>::Ty
fn new_unsafe_binder( interner: DbInterner<'db>, ty: Binder<DbInterner<'db>, <DbInterner<'db> as Interner>::Ty>, ) -> Self
Source§fn has_unsafe_fields(self) -> bool
fn has_unsafe_fields(self) -> bool
fn new_projection_from_args( interner: I, def_id: <I as Interner>::DefId, args: <I as Interner>::GenericArgs, ) -> Self
fn new_projection(
interner: I,
def_id: <I as Interner>::DefId,
args: impl IntoIterator- >,
) -> Self
fn is_ty_var(self) -> bool
fn is_ty_error(self) -> bool
fn is_floating_point(self) -> bool
fn is_integral(self) -> bool
fn is_fn_ptr(self) -> bool
fn fn_sig(self, interner: I) -> Binder<I, FnSig<I>>
fn is_known_rigid(self) -> bool
fn is_guaranteed_unsized_raw(self) -> bool
Source§impl<'db> TypeFoldable<DbInterner<'db>> for Ty<'db>
impl<'db> TypeFoldable<DbInterner<'db>> for Ty<'db>
Source§fn try_fold_with<F: FallibleTypeFolder<DbInterner<'db>>>(
self,
folder: &mut F,
) -> Result<Self, F::Error>
fn try_fold_with<F: FallibleTypeFolder<DbInterner<'db>>>( self, folder: &mut F, ) -> Result<Self, F::Error>
Source§impl<'db> TypeSuperFoldable<DbInterner<'db>> for Ty<'db>
impl<'db> TypeSuperFoldable<DbInterner<'db>> for Ty<'db>
Source§fn try_super_fold_with<F: FallibleTypeFolder<DbInterner<'db>>>(
self,
folder: &mut F,
) -> Result<Self, F::Error>
fn try_super_fold_with<F: FallibleTypeFolder<DbInterner<'db>>>( self, folder: &mut F, ) -> Result<Self, F::Error>
TypeFolder
methods, when a non-custom traversal
is desired for the value of the type of interest passed to that method.
For example, in MyFolder::try_fold_ty(ty)
, it is valid to call
ty.try_super_fold_with(self)
, but any other folding should be done
with xyz.try_fold_with(self)
.Source§fn super_fold_with<F: TypeFolder<DbInterner<'db>>>(self, folder: &mut F) -> Self
fn super_fold_with<F: TypeFolder<DbInterner<'db>>>(self, folder: &mut F) -> Self
try_super_fold_with
for use with
infallible folders. Do not override this method, to ensure coherence
with try_super_fold_with
.Source§impl<'db> TypeSuperVisitable<DbInterner<'db>> for Ty<'db>
impl<'db> TypeSuperVisitable<DbInterner<'db>> for Ty<'db>
Source§fn super_visit_with<V: TypeVisitor<DbInterner<'db>>>(
&self,
visitor: &mut V,
) -> V::Result
fn super_visit_with<V: TypeVisitor<DbInterner<'db>>>( &self, visitor: &mut V, ) -> V::Result
TypeVisitor
methods, when a non-custom
traversal is desired for the value of the type of interest passed to
that method. For example, in MyVisitor::visit_ty(ty)
, it is valid to
call ty.super_visit_with(self)
, but any other visiting should be done
with xyz.visit_with(self)
.Source§impl<'db> TypeVisitable<DbInterner<'db>> for Ty<'db>
impl<'db> TypeVisitable<DbInterner<'db>> for Ty<'db>
Source§fn visit_with<V: TypeVisitor<DbInterner<'db>>>(
&self,
visitor: &mut V,
) -> V::Result
fn visit_with<V: TypeVisitor<DbInterner<'db>>>( &self, visitor: &mut V, ) -> V::Result
impl<'db> Copy for Ty<'db>
impl<'db> Eq for Ty<'db>
impl<'db> Send for Ty<'db>
impl<'db> StructuralPartialEq for Ty<'db>
impl<'db> Sync for Ty<'db>
Auto Trait Implementations§
impl<'db> Freeze for Ty<'db>
impl<'db> !RefUnwindSafe for Ty<'db>
impl<'db> Unpin for Ty<'db>
impl<'db> !UnwindSafe for Ty<'db>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T, R> CollectAndApply<T, R> for T
impl<T, R> CollectAndApply<T, R> for T
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<I, T> TypeVisitableExt<I> for Twhere
I: Interner,
T: TypeVisitable<I>,
impl<I, T> TypeVisitableExt<I> for Twhere
I: Interner,
T: TypeVisitable<I>,
fn has_type_flags(&self, flags: TypeFlags) -> bool
§fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool
fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool
true
if self
has any late-bound regions that are either
bound by binder
or bound by some binder outside of binder
.
If binder
is ty::INNERMOST
, this indicates whether
there are any late-bound regions that appear free.fn error_reported(&self) -> Result<(), <I as Interner>::ErrorGuaranteed>
§fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool
fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool
true
if this type has any regions that escape binder
(and
hence are not bound by it).§fn has_escaping_bound_vars(&self) -> bool
fn has_escaping_bound_vars(&self) -> bool
true
if this type has regions that are not a part of the type.
For example, for<'a> fn(&'a i32)
return false
, while fn(&'a i32)
would return true
. The latter can occur when traversing through the
former. Read morefn has_aliases(&self) -> bool
fn has_opaque_types(&self) -> bool
fn has_coroutines(&self) -> bool
fn references_error(&self) -> bool
fn has_non_region_param(&self) -> bool
fn has_infer_regions(&self) -> bool
fn has_infer_types(&self) -> bool
fn has_non_region_infer(&self) -> bool
fn has_infer(&self) -> bool
fn has_placeholders(&self) -> bool
fn has_non_region_placeholders(&self) -> bool
fn has_param(&self) -> bool
§fn has_free_regions(&self) -> bool
fn has_free_regions(&self) -> bool
fn has_erased_regions(&self) -> bool
§fn has_erasable_regions(&self) -> bool
fn has_erasable_regions(&self) -> bool
§fn is_global(&self) -> bool
fn is_global(&self) -> bool
§fn has_bound_regions(&self) -> bool
fn has_bound_regions(&self) -> bool
§fn has_non_region_bound_vars(&self) -> bool
fn has_non_region_bound_vars(&self) -> bool
§fn has_bound_vars(&self) -> bool
fn has_bound_vars(&self) -> bool
§fn still_further_specializable(&self) -> bool
fn still_further_specializable(&self) -> bool
impl
specialization.