pub type Binders<T> = Binders<T>;
Expand description
Represents generic parameters and an item bound by them. When the item has parent, the binders also contain the generic parameters for its parent. See chalk’s documentation for details.
One thing to keep in mind when working with Binders
(and Substitution
s, which represent
generic arguments) in rust-analyzer is that the ordering within is significant - the generic
parameters/arguments for an item MUST come before those for its parent. This is to facilitate
the integration with chalk-solve, which mildly puts constraints as such. See #13335 for its
motivation in detail.
Aliased Type§
struct Binders<T> {
pub binders: VariableKinds<<T as HasInterner>::Interner>,
/* private fields */
}
Fields§
§binders: VariableKinds<<T as HasInterner>::Interner>
The binders that quantify over the value.
Implementations
§impl<T> Binders<&T>where
T: Clone + HasInterner,
impl<T> Binders<&T>where
T: Clone + HasInterner,
pub fn cloned(self) -> Binders<T>
pub fn cloned(self) -> Binders<T>
Converts a Binders<&T>
to a Binders<T>
by cloning T
.
§impl<T, I> Binders<Binders<T>>where
T: TypeFoldable<I> + HasInterner<Interner = I>,
I: Interner,
impl<T, I> Binders<Binders<T>>where
T: TypeFoldable<I> + HasInterner<Interner = I>,
I: Interner,
pub fn fuse_binders(self, interner: <T as HasInterner>::Interner) -> Binders<T>
pub fn fuse_binders(self, interner: <T as HasInterner>::Interner) -> Binders<T>
This turns two levels of binders (for<A> for<B>
) into one level (for<A, B>
).
§impl<T> Binders<T>where
T: HasInterner,
impl<T> Binders<T>where
T: HasInterner,
pub fn new(
binders: VariableKinds<<T as HasInterner>::Interner>,
value: T,
) -> Binders<T>
pub fn new( binders: VariableKinds<<T as HasInterner>::Interner>, value: T, ) -> Binders<T>
Create new binders.
pub fn empty(interner: <T as HasInterner>::Interner, value: T) -> Binders<T>
pub fn empty(interner: <T as HasInterner>::Interner, value: T) -> Binders<T>
Wraps the given value in a binder without variables, i.e. for<> (value)
. Since our deBruijn indices count binders, not variables, this
is sometimes useful.
pub fn skip_binders(&self) -> &T
pub fn skip_binders(&self) -> &T
Skips the binder and returns the “bound” value. This is a
risky thing to do because it’s easy to get confused about
De Bruijn indices and the like. skip_binder
is only valid
when you are either extracting data that has nothing to
do with bound vars, or you are being very careful about
your depth accounting.
Some examples where skip_binder
is reasonable:
- extracting the
TraitId
from a TraitRef; - checking if there are any fields in a StructDatum
pub fn into_value_and_skipped_binders(
self,
) -> (T, VariableKinds<<T as HasInterner>::Interner>)
pub fn into_value_and_skipped_binders( self, ) -> (T, VariableKinds<<T as HasInterner>::Interner>)
Skips the binder and returns the “bound” value as well as the skipped free variables. This
is just as risky as [skip_binders
][Self::skip_binders].
pub fn as_ref(&self) -> Binders<&T>
pub fn as_ref(&self) -> Binders<&T>
Converts &Binders<T>
to Binders<&T>
. Produces new Binders
with cloned quantifiers containing a reference to the original
value, leaving the original in place.
pub fn map<U, OP>(self, op: OP) -> Binders<U>where
OP: FnOnce(T) -> U,
U: HasInterner<Interner = <T as HasInterner>::Interner>,
pub fn map<U, OP>(self, op: OP) -> Binders<U>where
OP: FnOnce(T) -> U,
U: HasInterner<Interner = <T as HasInterner>::Interner>,
Maps the binders by applying a function.
pub fn filter_map<U, OP>(self, op: OP) -> Option<Binders<U>>
pub fn filter_map<U, OP>(self, op: OP) -> Option<Binders<U>>
Transforms the inner value according to the given function; returns
None
if the function returns None
.
pub fn map_ref<'a, U, OP>(&'a self, op: OP) -> Binders<U>
pub fn map_ref<'a, U, OP>(&'a self, op: OP) -> Binders<U>
Maps a function taking Binders<&T>
over &Binders<T>
.
pub fn identity_substitution(
&self,
interner: <T as HasInterner>::Interner,
) -> Substitution<<T as HasInterner>::Interner>
pub fn identity_substitution( &self, interner: <T as HasInterner>::Interner, ) -> Substitution<<T as HasInterner>::Interner>
Creates a Substitution
containing bound vars such that applying this
substitution will not change the value, i.e. ^0.0, ^0.1, ^0.2
and so
on.
pub fn with_fresh_type_var(
interner: <T as HasInterner>::Interner,
op: impl FnOnce(Ty<<T as HasInterner>::Interner>) -> T,
) -> Binders<T>
pub fn with_fresh_type_var( interner: <T as HasInterner>::Interner, op: impl FnOnce(Ty<<T as HasInterner>::Interner>) -> T, ) -> Binders<T>
Creates a fresh binders that contains a single type variable. The result of the closure will be embedded in this binder. Note that you should be careful with what you return from the closure to account for the binder that will be added.
XXX FIXME – this is potentially a pretty footgun-y function.
§impl<T, I> Binders<T>where
T: TypeFoldable<I> + HasInterner<Interner = I>,
I: Interner,
impl<T, I> Binders<T>where
T: TypeFoldable<I> + HasInterner<Interner = I>,
I: Interner,
pub fn substitute(
self,
interner: I,
parameters: &(impl AsParameters<I> + ?Sized),
) -> T
pub fn substitute( self, interner: I, parameters: &(impl AsParameters<I> + ?Sized), ) -> T
Substitute parameters
for the variables introduced by these
binders. So if the binders represent (e.g.) <X, Y> { T }
and
parameters is the slice [A, B]
, then returns [X => A, Y => B] T
.
§impl<I> Binders<WhereClause<I>>where
I: Interner,
impl<I> Binders<WhereClause<I>>where
I: Interner,
pub fn into_well_formed_goal(self, interner: I) -> Binders<DomainGoal<I>>
pub fn into_well_formed_goal(self, interner: I) -> Binders<DomainGoal<I>>
As with WhereClause::into_well_formed_goal
, but for a
quantified where clause. For example, forall<T> { Implemented(T: Trait)}
would map to forall<T> { WellFormed(T: Trait) }
.
pub fn into_from_env_goal(self, interner: I) -> Binders<DomainGoal<I>>
pub fn into_from_env_goal(self, interner: I) -> Binders<DomainGoal<I>>
As with WhereClause::into_from_env_goal
, but mapped over any
binders. For example, forall<T> { Implemented(T: Trait)}
would map to forall<T> { FromEnv(T: Trait) }
.
Trait Implementations
§impl<I> CastTo<Binders<WhereClause<I>>> for Binders<WhereClause<I>>where
I: Interner,
impl<I> CastTo<Binders<WhereClause<I>>> for Binders<WhereClause<I>>where
I: Interner,
§impl<I, T> CastTo<Goal<I>> for Binders<T>where
I: Interner,
T: HasInterner<Interner = I> + CastTo<Goal<I>>,
impl<I, T> CastTo<Goal<I>> for Binders<T>where
I: Interner,
T: HasInterner<Interner = I> + CastTo<Goal<I>>,
§impl<I, T> CastTo<ProgramClause<I>> for Binders<T>where
I: Interner,
T: HasInterner<Interner = I> + CastTo<DomainGoal<I>>,
impl<I, T> CastTo<ProgramClause<I>> for Binders<T>where
I: Interner,
T: HasInterner<Interner = I> + CastTo<DomainGoal<I>>,
§impl<T> HasInterner for Binders<T>where
T: HasInterner,
impl<T> HasInterner for Binders<T>where
T: HasInterner,
§impl<V, U> IntoIterator for Binders<V>where
V: HasInterner + IntoIterator<Item = U>,
U: HasInterner<Interner = <V as HasInterner>::Interner>,
Allows iterating over a Binders<Vec>, for instance.
Each element will include the same set of parameter bounds.
impl<V, U> IntoIterator for Binders<V>where
V: HasInterner + IntoIterator<Item = U>,
U: HasInterner<Interner = <V as HasInterner>::Interner>,
Allows iterating over a Binders<Vec
§impl<I> IntoWhereClauses<I> for Binders<InlineBound<I>>where
I: Interner,
impl<I> IntoWhereClauses<I> for Binders<InlineBound<I>>where
I: Interner,
type Output = Binders<WhereClause<I>>
fn into_where_clauses( &self, interner: I, self_ty: Ty<I>, ) -> Vec<Binders<WhereClause<I>>>
§impl<T, I> TypeFoldable<I> for Binders<T>where
I: Interner,
T: HasInterner<Interner = I> + TypeFoldable<I>,
impl<T, I> TypeFoldable<I> for Binders<T>where
I: Interner,
T: HasInterner<Interner = I> + TypeFoldable<I>,
§fn try_fold_with<E>(
self,
folder: &mut dyn FallibleTypeFolder<I, Error = E>,
outer_binder: DebruijnIndex,
) -> Result<Binders<T>, E>
fn try_fold_with<E>( self, folder: &mut dyn FallibleTypeFolder<I, Error = E>, outer_binder: DebruijnIndex, ) -> Result<Binders<T>, E>
folder
to self
; binders
is the
number of binders that are in scope when beginning the
folder. Typically binders
starts as 0, but is adjusted when
we encounter Binders<T>
in the IR or other similar
constructs.§fn fold_with(
self,
folder: &mut dyn TypeFolder<I, Error = Infallible>,
outer_binder: DebruijnIndex,
) -> Self
fn fold_with( self, folder: &mut dyn TypeFolder<I, Error = Infallible>, outer_binder: DebruijnIndex, ) -> Self
try_fold_with
for use with infallible
folders. Do not override this method, to ensure coherence with
try_fold_with
.§impl<T, I> TypeVisitable<I> for Binders<T>where
I: Interner,
T: HasInterner + TypeVisitable<I>,
impl<T, I> TypeVisitable<I> for Binders<T>where
I: Interner,
T: HasInterner + TypeVisitable<I>,
§fn visit_with<B>(
&self,
visitor: &mut dyn TypeVisitor<I, BreakTy = B>,
outer_binder: DebruijnIndex,
) -> ControlFlow<B>
fn visit_with<B>( &self, visitor: &mut dyn TypeVisitor<I, BreakTy = B>, outer_binder: DebruijnIndex, ) -> ControlFlow<B>
visitor
to self
; binders
is the
number of binders that are in scope when beginning the
visitor. Typically binders
starts as 0, but is adjusted when
we encounter Binders<T>
in the IR or other similar
constructs.