1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
use crate::clauses::builder::ClauseBuilder;
use crate::rust_ir::*;
use crate::split::Split;
use chalk_ir::cast::{Cast, Caster};
use chalk_ir::interner::Interner;
use chalk_ir::*;
use std::iter;
use tracing::instrument;
/// Trait for lowering a given piece of rust-ir source (e.g., an impl
/// or struct definition) into its associated "program clauses" --
/// that is, into the lowered, logical rules that it defines.
pub trait ToProgramClauses<I: Interner> {
fn to_program_clauses(&self, builder: &mut ClauseBuilder<'_, I>, environment: &Environment<I>);
}
impl<I: Interner> ToProgramClauses<I> for ImplDatum<I> {
/// Given `impl<T: Clone> Clone for Vec<T> { ... }`, generate:
///
/// ```notrust
/// -- Rule Implemented-From-Impl
/// forall<T> {
/// Implemented(Vec<T>: Clone) :- Implemented(T: Clone).
/// }
/// ```
///
/// For a negative impl like `impl... !Clone for ...`, however, we
/// generate nothing -- this is just a way to *opt out* from the
/// default auto trait impls, it doesn't have any positive effect
/// on its own.
fn to_program_clauses(
&self,
builder: &mut ClauseBuilder<'_, I>,
_environment: &Environment<I>,
) {
if self.is_positive() {
let binders = self.binders.clone();
builder.push_binders(
binders,
|builder,
ImplDatumBound {
trait_ref,
where_clauses,
}| {
builder.push_clause(trait_ref, where_clauses);
},
);
}
}
}
impl<I: Interner> ToProgramClauses<I> for AssociatedTyValue<I> {
/// Given the following trait:
///
/// ```notrust
/// trait Iterable {
/// type IntoIter<'a>: 'a;
/// }
/// ```
///
/// Then for the following impl:
/// ```notrust
/// impl<T> Iterable for Vec<T> where T: Clone {
/// type IntoIter<'a> = Iter<'a, T>;
/// }
/// ```
///
/// we generate:
///
/// ```notrust
/// -- Rule Normalize-From-Impl
/// forall<'a, T> {
/// Normalize(<Vec<T> as Iterable>::IntoIter<'a> -> Iter<'a, T>>) :-
/// Implemented(T: Clone), // (1)
/// Implemented(Iter<'a, T>: 'a). // (2)
/// }
/// ```
fn to_program_clauses(
&self,
builder: &mut ClauseBuilder<'_, I>,
_environment: &Environment<I>,
) {
let impl_datum = builder.db.impl_datum(self.impl_id);
let associated_ty = builder.db.associated_ty_data(self.associated_ty_id);
builder.push_binders(self.value.clone(), |builder, assoc_ty_value| {
let all_parameters = builder.placeholders_in_scope().to_vec();
// Get the projection for this associated type:
//
// * `impl_params`: `[!T]`
// * `projection`: `<Vec<!T> as Iterable>::Iter<'!a>`
let (impl_params, projection) = builder
.db
.impl_parameters_and_projection_from_associated_ty_value(&all_parameters, self);
// Assemble the full list of conditions for projection to be valid.
// This comes in two parts, marked as (1) and (2) in doc above:
//
// 1. require that the where clauses from the impl apply
let interner = builder.db.interner();
let impl_where_clauses = impl_datum
.binders
.map_ref(|b| &b.where_clauses)
.into_iter()
.map(|wc| wc.cloned().substitute(interner, impl_params));
// 2. any where-clauses from the `type` declaration in the trait: the
// parameters must be substituted with those of the impl
let assoc_ty_where_clauses = associated_ty
.binders
.map_ref(|b| &b.where_clauses)
.into_iter()
.map(|wc| wc.cloned().substitute(interner, &projection.substitution));
// Create the final program clause:
//
// ```notrust
// -- Rule Normalize-From-Impl
// forall<'a, T> {
// Normalize(<Vec<T> as Iterable>::IntoIter<'a> -> Iter<'a, T>>) :-
// Implemented(T: Clone), // (1)
// Implemented(Iter<'a, T>: 'a). // (2)
// }
// ```
builder.push_clause(
Normalize {
alias: AliasTy::Projection(projection.clone()),
ty: assoc_ty_value.ty,
},
impl_where_clauses.chain(assoc_ty_where_clauses),
);
});
}
}
impl<I: Interner> ToProgramClauses<I> for OpaqueTyDatum<I> {
/// Given `opaque type T<U>: A + B = HiddenTy where U: C;`, we generate:
///
/// ```notrust
/// AliasEq(T<U> = HiddenTy) :- Reveal.
/// AliasEq(T<U> = !T<U>).
/// WF(T<U>) :- WF(U: C).
/// Implemented(!T<U>: A).
/// Implemented(!T<U>: B).
/// ```
/// where `!T<..>` is the placeholder for the unnormalized type `T<..>`.
#[instrument(level = "debug", skip(builder))]
fn to_program_clauses(
&self,
builder: &mut ClauseBuilder<'_, I>,
_environment: &Environment<I>,
) {
builder.push_binders(self.bound.clone(), |builder, opaque_ty_bound| {
let interner = builder.interner();
let substitution = builder.substitution_in_scope();
let alias = AliasTy::Opaque(OpaqueTy {
opaque_ty_id: self.opaque_ty_id,
substitution: substitution.clone(),
});
let alias_placeholder_ty =
TyKind::OpaqueType(self.opaque_ty_id, substitution).intern(interner);
// AliasEq(T<..> = HiddenTy) :- Reveal.
builder.push_clause(
DomainGoal::Holds(
AliasEq {
alias: alias.clone(),
ty: builder.db.hidden_opaque_type(self.opaque_ty_id),
}
.cast(interner),
),
iter::once(DomainGoal::Reveal),
);
// AliasEq(T<..> = !T<..>).
builder.push_fact(DomainGoal::Holds(
AliasEq {
alias,
ty: alias_placeholder_ty.clone(),
}
.cast(interner),
));
// WF(!T<..>) :- WF(WC).
builder.push_binders(opaque_ty_bound.where_clauses, |builder, where_clauses| {
builder.push_clause(
WellFormed::Ty(alias_placeholder_ty.clone()),
where_clauses
.into_iter()
.map(|wc| wc.into_well_formed_goal(interner)),
);
});
let substitution = Substitution::from1(interner, alias_placeholder_ty);
for bound in opaque_ty_bound.bounds {
let bound_with_placeholder_ty = bound.substitute(interner, &substitution);
builder.push_binders(bound_with_placeholder_ty, |builder, bound| match &bound {
// For the implemented traits, we need to elaborate super traits and add where clauses from the trait
WhereClause::Implemented(trait_ref) => {
super::super_traits::push_trait_super_clauses(
builder.db,
builder,
trait_ref.clone(),
)
}
// FIXME: Associated item bindings are just taken as facts (?)
WhereClause::AliasEq(_) => builder.push_fact(bound),
WhereClause::LifetimeOutlives(..) => {}
WhereClause::TypeOutlives(..) => {}
});
}
});
}
}
/// Generates the "well-formed" program clauses for an applicative type
/// with the name `type_name`. For example, given a struct definition:
///
/// ```ignore
/// struct Foo<T: Eq> { }
/// ```
///
/// we would generate the clause:
///
/// ```notrust
/// forall<T> {
/// WF(Foo<T>) :- WF(T: Eq).
/// }
/// ```
///
/// # Parameters
/// - builder -- the clause builder. We assume all the generic types from `Foo` are in scope
/// - type_name -- in our example above, the name `Foo`
/// - where_clauses -- the list of where clauses declared on the type (`T: Eq`, in our example)
fn well_formed_program_clauses<'a, I, Wc>(
builder: &'a mut ClauseBuilder<'_, I>,
ty: Ty<I>,
where_clauses: Wc,
) where
I: Interner,
Wc: Iterator<Item = &'a QuantifiedWhereClause<I>>,
{
let interner = builder.interner();
builder.push_clause(
WellFormed::Ty(ty),
where_clauses
.cloned()
.map(|qwc| qwc.into_well_formed_goal(interner)),
);
}
/// Generates the "fully visible" program clauses for an applicative type
/// with the name `type_name`. For example, given a struct definition:
///
/// ```ignore
/// struct Foo<T: Eq> { }
/// ```
///
/// we would generate the clause:
///
/// ```notrust
/// forall<T> {
/// IsFullyVisible(Foo<T>) :- IsFullyVisible(T).
/// }
/// ```
///
/// # Parameters
///
/// - builder -- the clause builder. We assume all the generic types from `Foo` are in scope
/// - type_name -- in our example above, the name `Foo`
fn fully_visible_program_clauses<I>(
builder: &mut ClauseBuilder<'_, I>,
ty: Ty<I>,
subst: &Substitution<I>,
) where
I: Interner,
{
let interner = builder.interner();
builder.push_clause(
DomainGoal::IsFullyVisible(ty),
subst
.type_parameters(interner)
.map(|typ| DomainGoal::IsFullyVisible(typ).cast::<Goal<_>>(interner)),
);
}
/// Generates the "implied bounds" clauses for an applicative
/// type with the name `type_name`. For example, if `type_name`
/// represents a struct `S` that is declared like:
///
/// ```ignore
/// struct S<T> where T: Eq { }
/// ```
///
/// then we would generate the rule:
///
/// ```notrust
/// FromEnv(T: Eq) :- FromEnv(S<T>)
/// ```
///
/// # Parameters
///
/// - builder -- the clause builder. We assume all the generic types from `S` are in scope.
/// - type_name -- in our example above, the name `S`
/// - where_clauses -- the list of where clauses declared on the type (`T: Eq`, in our example).
fn implied_bounds_program_clauses<'a, I, Wc>(
builder: &'a mut ClauseBuilder<'_, I>,
ty: &Ty<I>,
where_clauses: Wc,
) where
I: Interner,
Wc: Iterator<Item = &'a QuantifiedWhereClause<I>>,
{
let interner = builder.interner();
for qwc in where_clauses {
builder.push_binders(qwc.clone(), |builder, wc| {
builder.push_clause(wc.into_from_env_goal(interner), Some(ty.clone().from_env()));
});
}
}
impl<I: Interner> ToProgramClauses<I> for AdtDatum<I> {
/// Given the following type definition: `struct Foo<T: Eq> { }`, generate:
///
/// ```notrust
/// -- Rule WellFormed-Type
/// forall<T> {
/// WF(Foo<T>) :- WF(T: Eq).
/// }
///
/// -- Rule Implied-Bound-From-Type
/// forall<T> {
/// FromEnv(T: Eq) :- FromEnv(Foo<T>).
/// }
///
/// forall<T> {
/// IsFullyVisible(Foo<T>) :- IsFullyVisible(T).
/// }
/// ```
///
/// If the type `Foo` is marked `#[upstream]`, we also generate:
///
/// ```notrust
/// forall<T> { IsUpstream(Foo<T>). }
/// ```
///
/// Otherwise, if the type `Foo` is not marked `#[upstream]`, we generate:
/// ```notrust
/// forall<T> { IsLocal(Foo<T>). }
/// ```
///
/// Given an `#[upstream]` type that is also fundamental:
///
/// ```notrust
/// #[upstream]
/// #[fundamental]
/// struct Box<T, U> {}
/// ```
///
/// We generate the following clauses:
///
/// ```notrust
/// forall<T, U> { IsLocal(Box<T, U>) :- IsLocal(T). }
/// forall<T, U> { IsLocal(Box<T, U>) :- IsLocal(U). }
///
/// forall<T, U> { IsUpstream(Box<T, U>) :- IsUpstream(T), IsUpstream(U). }
///
/// // Generated for both upstream and local fundamental types
/// forall<T, U> { DownstreamType(Box<T, U>) :- DownstreamType(T). }
/// forall<T, U> { DownstreamType(Box<T, U>) :- DownstreamType(U). }
/// ```
///
#[instrument(level = "debug", skip(builder))]
fn to_program_clauses(
&self,
builder: &mut ClauseBuilder<'_, I>,
_environment: &Environment<I>,
) {
let interner = builder.interner();
let binders = self.binders.map_ref(|b| &b.where_clauses).cloned();
builder.push_binders(binders, |builder, where_clauses| {
let self_ty = TyKind::Adt(self.id, builder.substitution_in_scope()).intern(interner);
well_formed_program_clauses(builder, self_ty.clone(), where_clauses.iter());
implied_bounds_program_clauses(builder, &self_ty, where_clauses.iter());
fully_visible_program_clauses(
builder,
self_ty.clone(),
&builder.substitution_in_scope(),
);
// Types that are not marked `#[upstream]` satisfy IsLocal(Ty)
if !self.flags.upstream {
// `IsLocalTy(Ty)` depends *only* on whether the type
// is marked #[upstream] and nothing else
builder.push_fact(DomainGoal::IsLocal(self_ty.clone()));
} else if self.flags.fundamental {
// If a type is `#[upstream]`, but is also
// `#[fundamental]`, it satisfies IsLocal if and only
// if its parameters satisfy IsLocal
for type_param in builder.substitution_in_scope().type_parameters(interner) {
builder.push_clause(
DomainGoal::IsLocal(self_ty.clone()),
Some(DomainGoal::IsLocal(type_param)),
);
}
builder.push_clause(
DomainGoal::IsUpstream(self_ty.clone()),
builder
.substitution_in_scope()
.type_parameters(interner)
.map(|type_param| DomainGoal::IsUpstream(type_param)),
);
} else {
// The type is just upstream and not fundamental
builder.push_fact(DomainGoal::IsUpstream(self_ty.clone()));
}
if self.flags.fundamental {
assert!(
builder
.substitution_in_scope()
.type_parameters(interner)
.count()
>= 1,
"Only fundamental types with type parameters are supported"
);
for type_param in builder.substitution_in_scope().type_parameters(interner) {
builder.push_clause(
DomainGoal::DownstreamType(self_ty.clone()),
Some(DomainGoal::DownstreamType(type_param)),
);
}
}
});
}
}
impl<I: Interner> ToProgramClauses<I> for FnDefDatum<I> {
/// Given the following function definition: `fn bar<T>() where T: Eq`, generate:
///
/// ```notrust
/// -- Rule WellFormed-Type
/// forall<T> {
/// WF(bar<T>) :- WF(T: Eq)
/// }
///
/// -- Rule Implied-Bound-From-Type
/// forall<T> {
/// FromEnv(T: Eq) :- FromEnv(bar<T>).
/// }
///
/// forall<T> {
/// IsFullyVisible(bar<T>) :- IsFullyVisible(T).
/// }
/// ```
#[instrument(level = "debug", skip(builder))]
fn to_program_clauses(
&self,
builder: &mut ClauseBuilder<'_, I>,
_environment: &Environment<I>,
) {
let interner = builder.interner();
let binders = self.binders.map_ref(|b| &b.where_clauses).cloned();
builder.push_binders(binders, |builder, where_clauses| {
let ty = TyKind::FnDef(self.id, builder.substitution_in_scope()).intern(interner);
well_formed_program_clauses(builder, ty.clone(), where_clauses.iter());
implied_bounds_program_clauses(builder, &ty, where_clauses.iter());
fully_visible_program_clauses(builder, ty, &builder.substitution_in_scope());
});
}
}
impl<I: Interner> ToProgramClauses<I> for TraitDatum<I> {
/// Given the following trait declaration: `trait Ord<T> where Self: Eq<T> { ... }`, generate:
///
/// ```notrust
/// -- Rule WellFormed-TraitRef
/// forall<Self, T> {
/// WF(Self: Ord<T>) :- Implemented(Self: Ord<T>), WF(Self: Eq<T>).
/// }
/// ```
///
/// and the reverse rules:
///
/// ```notrust
/// -- Rule Implemented-From-Env
/// forall<Self, T> {
/// (Self: Ord<T>) :- FromEnv(Self: Ord<T>).
/// }
///
/// -- Rule Implied-Bound-From-Trait
/// forall<Self, T> {
/// FromEnv(Self: Eq<T>) :- FromEnv(Self: Ord<T>).
/// }
/// ```
///
/// As specified in the orphan rules, if a trait is not marked `#[upstream]`, the current crate
/// can implement it for any type. To represent that, we generate:
///
/// ```notrust
/// // `Ord<T>` would not be `#[upstream]` when compiling `std`
/// forall<Self, T> { LocalImplAllowed(Self: Ord<T>). }
/// ```
///
/// For traits that are `#[upstream]` (i.e. not in the current crate), the orphan rules dictate
/// that impls are allowed as long as at least one type parameter is local and each type
/// prior to that is fully visible. That means that each type prior to the first local
/// type cannot contain any of the type parameters of the impl.
///
/// This rule is fairly complex, so we expand it and generate a program clause for each
/// possible case. This is represented as follows:
///
/// ```notrust
/// // for `#[upstream] trait Foo<T, U, V> where Self: Eq<T> { ... }`
/// forall<Self, T, U, V> {
/// LocalImplAllowed(Self: Foo<T, U, V>) :- IsLocal(Self).
/// }
///
/// forall<Self, T, U, V> {
/// LocalImplAllowed(Self: Foo<T, U, V>) :-
/// IsFullyVisible(Self),
/// IsLocal(T).
/// }
///
/// forall<Self, T, U, V> {
/// LocalImplAllowed(Self: Foo<T, U, V>) :-
/// IsFullyVisible(Self),
/// IsFullyVisible(T),
/// IsLocal(U).
/// }
///
/// forall<Self, T, U, V> {
/// LocalImplAllowed(Self: Foo<T, U, V>) :-
/// IsFullyVisible(Self),
/// IsFullyVisible(T),
/// IsFullyVisible(U),
/// IsLocal(V).
/// }
/// ```
///
/// The overlap check uses compatible { ... } mode to ensure that it accounts for impls that
/// may exist in some other *compatible* world. For every upstream trait, we add a rule to
/// account for the fact that upstream crates are able to compatibly add impls of upstream
/// traits for upstream types.
///
/// ```notrust
/// // For `#[upstream] trait Foo<T, U, V> where Self: Eq<T> { ... }`
/// forall<Self, T, U, V> {
/// Implemented(Self: Foo<T, U, V>) :-
/// Implemented(Self: Eq<T>), // where clauses
/// Compatible, // compatible modality
/// IsUpstream(Self),
/// IsUpstream(T),
/// IsUpstream(U),
/// IsUpstream(V),
/// CannotProve. // returns ambiguous
/// }
/// ```
///
/// In certain situations, this is too restrictive. Consider the following code:
///
/// ```notrust
/// /* In crate std */
/// trait Sized { }
/// struct str { }
///
/// /* In crate bar (depends on std) */
/// trait Bar { }
/// impl Bar for str { }
/// impl<T> Bar for T where T: Sized { }
/// ```
///
/// Here, because of the rules we've defined, these two impls overlap. The std crate is
/// upstream to bar, and thus it is allowed to compatibly implement Sized for str. If str
/// can implement Sized in a compatible future, these two impls definitely overlap since the
/// second impl covers all types that implement Sized.
///
/// The solution we've got right now is to mark Sized as "fundamental" when it is defined.
/// This signals to the Rust compiler that it can rely on the fact that str does not
/// implement Sized in all contexts. A consequence of this is that we can no longer add an
/// implementation of Sized compatibly for str. This is the trade off you make when defining
/// a fundamental trait.
///
/// To implement fundamental traits, we simply just do not add the rule above that allows
/// upstream types to implement upstream traits. Fundamental traits are not allowed to
/// compatibly do that.
fn to_program_clauses(&self, builder: &mut ClauseBuilder<'_, I>, environment: &Environment<I>) {
let interner = builder.interner();
let binders = self.binders.map_ref(|b| &b.where_clauses).cloned();
builder.push_binders(binders, |builder, where_clauses| {
let trait_ref = chalk_ir::TraitRef {
trait_id: self.id,
substitution: builder.substitution_in_scope(),
};
builder.push_clause(
trait_ref.clone().well_formed(),
where_clauses
.iter()
.cloned()
.map(|qwc| qwc.into_well_formed_goal(interner))
.casted::<Goal<_>>(interner)
.chain(Some(trait_ref.clone().cast(interner))),
);
// The number of parameters will always be at least 1
// because of the Self parameter that is automatically
// added to every trait. This is important because
// otherwise the added program clauses would not have any
// conditions.
let type_parameters: Vec<_> = trait_ref.type_parameters(interner).collect();
if environment.has_compatible_clause(interner) {
// Note: even though we do check for a `Compatible` clause here,
// we also keep it as a condition for the clauses below, purely
// for logical consistency. But really, it's not needed and could be
// removed.
// Drop trait can't have downstream implementation because it can only
// be implemented with the same genericity as the struct definition,
// i.e. Drop implementation for `struct S<T: Eq> {}` is forced to be
// `impl Drop<T: Eq> for S<T> { ... }`. That means that orphan rules
// prevent Drop from being implemented in downstream crates.
if self.well_known != Some(WellKnownTrait::Drop) {
// Add all cases for potential downstream impls that could exist
for i in 0..type_parameters.len() {
builder.push_clause(
trait_ref.clone(),
where_clauses
.iter()
.cloned()
.casted(interner)
.chain(iter::once(DomainGoal::Compatible.cast(interner)))
.chain((0..i).map(|j| {
DomainGoal::IsFullyVisible(type_parameters[j].clone())
.cast(interner)
}))
.chain(iter::once(
DomainGoal::DownstreamType(type_parameters[i].clone())
.cast(interner),
))
.chain(iter::once(GoalData::CannotProve.intern(interner))),
);
}
}
// Fundamental traits can be reasoned about negatively without any ambiguity, so no
// need for this rule if the trait is fundamental.
if !self.flags.fundamental {
builder.push_clause(
trait_ref.clone(),
where_clauses
.iter()
.cloned()
.casted(interner)
.chain(iter::once(DomainGoal::Compatible.cast(interner)))
.chain(
trait_ref
.type_parameters(interner)
.map(|ty| DomainGoal::IsUpstream(ty).cast(interner)),
)
.chain(iter::once(GoalData::CannotProve.intern(interner))),
);
}
}
// Orphan rules:
if !self.flags.upstream {
// Impls for traits declared locally always pass the impl rules
builder.push_fact(DomainGoal::LocalImplAllowed(trait_ref.clone()));
} else {
// Impls for remote traits must have a local type in the right place
for i in 0..type_parameters.len() {
builder.push_clause(
DomainGoal::LocalImplAllowed(trait_ref.clone()),
(0..i)
.map(|j| DomainGoal::IsFullyVisible(type_parameters[j].clone()))
.chain(Some(DomainGoal::IsLocal(type_parameters[i].clone()))),
);
}
}
// Reverse implied bound rules: given (e.g.) `trait Foo: Bar + Baz`,
// we create rules like:
//
// ```
// FromEnv(T: Bar) :- FromEnv(T: Foo)
// ```
//
// and
//
// ```
// FromEnv(T: Baz) :- FromEnv(T: Foo)
// ```
for qwc in where_clauses {
builder.push_binders(qwc, |builder, wc| {
builder.push_clause(
wc.into_from_env_goal(interner),
Some(trait_ref.clone().from_env()),
);
});
}
// Finally, for every trait `Foo` we make a rule
//
// ```
// Implemented(T: Foo) :- FromEnv(T: Foo)
// ```
builder.push_clause(trait_ref.clone(), Some(trait_ref.from_env()));
});
}
}
impl<I: Interner> ToProgramClauses<I> for AssociatedTyDatum<I> {
/// For each associated type, we define the "projection
/// equality" rules. There are always two; one for a successful normalization,
/// and one for the "fallback" notion of equality.
///
/// Given: (here, `'a` and `T` represent zero or more parameters)
///
/// ```notrust
/// trait Foo {
/// type Assoc<'a, T>: Bounds where WC;
/// }
/// ```
///
/// we generate the 'fallback' rule:
///
/// ```notrust
/// -- Rule AliasEq-Placeholder
/// forall<Self, 'a, T> {
/// AliasEq(<Self as Foo>::Assoc<'a, T> = (Foo::Assoc<'a, T>)<Self>).
/// }
/// ```
///
/// and
///
/// ```notrust
/// -- Rule AliasEq-Normalize
/// forall<Self, 'a, T, U> {
/// AliasEq(<T as Foo>::Assoc<'a, T> = U) :-
/// Normalize(<T as Foo>::Assoc -> U).
/// }
/// ```
///
/// We used to generate an "elaboration" rule like this:
///
/// ```notrust
/// forall<T> {
/// T: Foo :- exists<U> { AliasEq(<T as Foo>::Assoc = U) }.
/// }
/// ```
///
/// but this caused problems with the recursive solver. In
/// particular, whenever normalization is possible, we cannot
/// solve that projection uniquely, since we can now elaborate
/// `AliasEq` to fallback *or* normalize it. So instead we
/// handle this kind of reasoning through the `FromEnv` predicate.
///
/// Another set of clauses we generate for each associated type is about placeholder associated
/// types (i.e. `TyKind::AssociatedType`). Given
///
/// ```notrust
/// trait Foo {
/// type Assoc<'a, T>: Bar<U = Ty> where WC;
/// }
/// ```
///
/// we generate
///
/// ```notrust
/// forall<Self, 'a, T> {
/// Implemented((Foo::Assoc<'a, T>)<Self>: Bar) :- WC.
/// AliasEq(<<(Foo::Assoc<'a, T>)<Self>> as Bar>::U = Ty) :- WC.
/// }
/// ```
///
/// We also generate rules specific to WF requirements and implied bounds:
///
/// ```notrust
/// -- Rule WellFormed-AssocTy
/// forall<Self, 'a, T> {
/// WellFormed((Foo::Assoc)<Self, 'a, T>) :- WellFormed(Self: Foo), WellFormed(WC).
/// }
///
/// -- Rule Implied-WC-From-AssocTy
/// forall<Self, 'a, T> {
/// FromEnv(WC) :- FromEnv((Foo::Assoc)<Self, 'a, T>).
/// }
///
/// -- Rule Implied-Bound-From-AssocTy
/// forall<Self, 'a, T> {
/// FromEnv(<Self as Foo>::Assoc<'a,T>: Bounds) :- FromEnv(Self: Foo), WC.
/// }
///
/// -- Rule Implied-Trait-From-AssocTy
/// forall<Self,'a, T> {
/// FromEnv(Self: Foo) :- FromEnv((Foo::Assoc)<Self, 'a,T>).
/// }
/// ```
fn to_program_clauses(
&self,
builder: &mut ClauseBuilder<'_, I>,
_environment: &Environment<I>,
) {
let interner = builder.interner();
let binders = self.binders.clone();
builder.push_binders(
binders,
|builder,
AssociatedTyDatumBound {
where_clauses,
bounds,
}| {
let substitution = builder.substitution_in_scope();
let projection = ProjectionTy {
associated_ty_id: self.id,
substitution: substitution.clone(),
};
let projection_ty = AliasTy::Projection(projection.clone()).intern(interner);
// Retrieve the trait ref embedding the associated type
let trait_ref = builder.db.trait_ref_from_projection(&projection);
// Construct an application from the projection. So if we have `<T as Iterator>::Item`,
// we would produce `(Iterator::Item)<T>`.
let placeholder_ty = TyKind::AssociatedType(self.id, substitution).intern(interner);
let projection_eq = AliasEq {
alias: AliasTy::Projection(projection.clone()),
ty: placeholder_ty.clone(),
};
// Fallback rule. The solver uses this to move between the projection
// and placeholder type.
//
// forall<Self> {
// AliasEq(<Self as Foo>::Assoc = (Foo::Assoc)<Self>).
// }
builder.push_fact_with_priority(projection_eq, None, ClausePriority::Low);
// Well-formedness of projection type.
//
// forall<Self> {
// WellFormed((Foo::Assoc)<Self>) :- WellFormed(Self: Foo), WellFormed(WC).
// }
builder.push_clause(
WellFormed::Ty(placeholder_ty.clone()),
iter::once(WellFormed::Trait(trait_ref.clone()).cast::<Goal<_>>(interner))
.chain(
where_clauses
.iter()
.cloned()
.map(|qwc| qwc.into_well_formed_goal(interner))
.casted(interner),
),
);
// Assuming well-formedness of projection type means we can assume
// the trait ref as well. Mostly used in function bodies.
//
// forall<Self> {
// FromEnv(Self: Foo) :- FromEnv((Foo::Assoc)<Self>).
// }
builder.push_clause(
FromEnv::Trait(trait_ref.clone()),
Some(placeholder_ty.from_env()),
);
// Reverse rule for where clauses.
//
// forall<Self> {
// FromEnv(WC) :- FromEnv((Foo::Assoc)<Self>).
// }
//
// This is really a family of clauses, one for each where clause.
for qwc in &where_clauses {
builder.push_binders(qwc.clone(), |builder, wc| {
builder.push_clause(
wc.into_from_env_goal(interner),
Some(FromEnv::Ty(placeholder_ty.clone())),
);
});
}
for quantified_bound in bounds {
builder.push_binders(quantified_bound, |builder, bound| {
// Reverse rule for implied bounds.
//
// forall<Self> {
// FromEnv(<Self as Foo>::Assoc: Bounds) :- FromEnv(Self: Foo), WC
// }
for wc in bound.into_where_clauses(interner, projection_ty.clone()) {
builder.push_clause(
wc.into_from_env_goal(interner),
iter::once(
FromEnv::Trait(trait_ref.clone()).cast::<Goal<_>>(interner),
)
.chain(where_clauses.iter().cloned().casted(interner)),
);
}
// Rules for the corresponding placeholder type.
//
// When `Foo::Assoc` has a bound `type Assoc: Trait<T = Ty>`, we generate:
//
// forall<Self> {
// Implemented((Foo::Assoc)<Self>: Trait) :- WC
// AliasEq(<(Foo::Assoc)<Self> as Trait>::T = Ty) :- WC
// }
for wc in bound.into_where_clauses(interner, placeholder_ty.clone()) {
builder.push_clause(wc, where_clauses.iter().cloned());
}
});
}
// add new type parameter U
builder.push_bound_ty(|builder, ty| {
// `Normalize(<T as Foo>::Assoc -> U)`
let normalize = Normalize {
alias: AliasTy::Projection(projection.clone()),
ty: ty.clone(),
};
// `AliasEq(<T as Foo>::Assoc = U)`
let projection_eq = AliasEq {
alias: AliasTy::Projection(projection),
ty,
};
// Projection equality rule from above.
//
// forall<T, U> {
// AliasEq(<T as Foo>::Assoc = U) :-
// Normalize(<T as Foo>::Assoc -> U).
// }
builder.push_clause(projection_eq, Some(normalize));
});
},
);
}
}