1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
use super::sealed::Sealed;
use crate::simd::{cmp::SimdOrd, LaneCount, Simd, SimdCast, SimdElement, SupportedLaneCount};
/// Operations on SIMD vectors of unsigned integers.
pub trait SimdUint: Copy + Sealed {
/// Scalar type contained by this SIMD vector type.
type Scalar;
/// A SIMD vector with a different element type.
type Cast<T: SimdElement>;
/// Performs elementwise conversion of this vector's elements to another SIMD-valid type.
///
/// This follows the semantics of Rust's `as` conversion for casting integers (wrapping to
/// other integer types, and saturating to float types).
#[must_use]
fn cast<T: SimdCast>(self) -> Self::Cast<T>;
/// Wrapping negation.
///
/// Like [`u32::wrapping_neg`], all applications of this function will wrap, with the exception
/// of `-0`.
fn wrapping_neg(self) -> Self;
/// Lanewise saturating add.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::u32::MAX;
/// let x = Simd::from_array([2, 1, 0, MAX]);
/// let max = Simd::splat(MAX);
/// let unsat = x + max;
/// let sat = x.saturating_add(max);
/// assert_eq!(unsat, Simd::from_array([1, 0, MAX, MAX - 1]));
/// assert_eq!(sat, max);
/// ```
fn saturating_add(self, second: Self) -> Self;
/// Lanewise saturating subtract.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::u32::MAX;
/// let x = Simd::from_array([2, 1, 0, MAX]);
/// let max = Simd::splat(MAX);
/// let unsat = x - max;
/// let sat = x.saturating_sub(max);
/// assert_eq!(unsat, Simd::from_array([3, 2, 1, 0]));
/// assert_eq!(sat, Simd::splat(0));
fn saturating_sub(self, second: Self) -> Self;
/// Lanewise absolute difference.
/// Every element becomes the absolute difference of `self` and `second`.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::u32::MAX;
/// let a = Simd::from_array([0, MAX, 100, 20]);
/// let b = Simd::from_array([MAX, 0, 80, 200]);
/// assert_eq!(a.abs_diff(b), Simd::from_array([MAX, MAX, 20, 180]));
/// ```
fn abs_diff(self, second: Self) -> Self;
/// Returns the sum of the elements of the vector, with wrapping addition.
fn reduce_sum(self) -> Self::Scalar;
/// Returns the product of the elements of the vector, with wrapping multiplication.
fn reduce_product(self) -> Self::Scalar;
/// Returns the maximum element in the vector.
fn reduce_max(self) -> Self::Scalar;
/// Returns the minimum element in the vector.
fn reduce_min(self) -> Self::Scalar;
/// Returns the cumulative bitwise "and" across the elements of the vector.
fn reduce_and(self) -> Self::Scalar;
/// Returns the cumulative bitwise "or" across the elements of the vector.
fn reduce_or(self) -> Self::Scalar;
/// Returns the cumulative bitwise "xor" across the elements of the vector.
fn reduce_xor(self) -> Self::Scalar;
/// Reverses the byte order of each element.
fn swap_bytes(self) -> Self;
/// Reverses the order of bits in each elemnent.
/// The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
fn reverse_bits(self) -> Self;
/// Returns the number of ones in the binary representation of each element.
fn count_ones(self) -> Self;
/// Returns the number of zeros in the binary representation of each element.
fn count_zeros(self) -> Self;
/// Returns the number of leading zeros in the binary representation of each element.
fn leading_zeros(self) -> Self;
/// Returns the number of trailing zeros in the binary representation of each element.
fn trailing_zeros(self) -> Self;
/// Returns the number of leading ones in the binary representation of each element.
fn leading_ones(self) -> Self;
/// Returns the number of trailing ones in the binary representation of each element.
fn trailing_ones(self) -> Self;
}
macro_rules! impl_trait {
{ $($ty:ident ($signed:ident)),* } => {
$(
impl<const N: usize> Sealed for Simd<$ty, N>
where
LaneCount<N>: SupportedLaneCount,
{
}
impl<const N: usize> SimdUint for Simd<$ty, N>
where
LaneCount<N>: SupportedLaneCount,
{
type Scalar = $ty;
type Cast<T: SimdElement> = Simd<T, N>;
#[inline]
fn cast<T: SimdCast>(self) -> Self::Cast<T> {
// Safety: supported types are guaranteed by SimdCast
unsafe { core::intrinsics::simd::simd_as(self) }
}
#[inline]
fn wrapping_neg(self) -> Self {
use crate::simd::num::SimdInt;
(-self.cast::<$signed>()).cast()
}
#[inline]
fn saturating_add(self, second: Self) -> Self {
// Safety: `self` is a vector
unsafe { core::intrinsics::simd::simd_saturating_add(self, second) }
}
#[inline]
fn saturating_sub(self, second: Self) -> Self {
// Safety: `self` is a vector
unsafe { core::intrinsics::simd::simd_saturating_sub(self, second) }
}
#[inline]
fn abs_diff(self, second: Self) -> Self {
let max = self.simd_max(second);
let min = self.simd_min(second);
max - min
}
#[inline]
fn reduce_sum(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_add_ordered(self, 0) }
}
#[inline]
fn reduce_product(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_mul_ordered(self, 1) }
}
#[inline]
fn reduce_max(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_max(self) }
}
#[inline]
fn reduce_min(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_min(self) }
}
#[inline]
fn reduce_and(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_and(self) }
}
#[inline]
fn reduce_or(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_or(self) }
}
#[inline]
fn reduce_xor(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_xor(self) }
}
#[inline]
fn swap_bytes(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_bswap(self) }
}
#[inline]
fn reverse_bits(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_bitreverse(self) }
}
#[inline]
fn count_ones(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_ctpop(self) }
}
#[inline]
fn count_zeros(self) -> Self {
(!self).count_ones()
}
#[inline]
fn leading_zeros(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_ctlz(self) }
}
#[inline]
fn trailing_zeros(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_cttz(self) }
}
#[inline]
fn leading_ones(self) -> Self {
(!self).leading_zeros()
}
#[inline]
fn trailing_ones(self) -> Self {
(!self).trailing_zeros()
}
}
)*
}
}
impl_trait! { u8 (i8), u16 (i16), u32 (i32), u64 (i64), usize (isize) }