test_helpers/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
#![feature(powerpc_target_feature)]
#![cfg_attr(
    any(target_arch = "powerpc", target_arch = "powerpc64"),
    feature(stdarch_powerpc)
)]

pub mod array;

#[cfg(target_arch = "wasm32")]
pub mod wasm;

#[macro_use]
pub mod biteq;

pub mod subnormals;
use subnormals::FlushSubnormals;

/// Specifies the default strategy for testing a type.
///
/// This strategy should be what "makes sense" to test.
pub trait DefaultStrategy {
    type Strategy: proptest::strategy::Strategy<Value = Self>;
    fn default_strategy() -> Self::Strategy;
}

macro_rules! impl_num {
    { $type:tt } => {
        impl DefaultStrategy for $type {
            type Strategy = proptest::num::$type::Any;
            fn default_strategy() -> Self::Strategy {
                proptest::num::$type::ANY
            }
        }
    }
}

impl_num! { i8 }
impl_num! { i16 }
impl_num! { i32 }
impl_num! { i64 }
impl_num! { isize }
impl_num! { u8 }
impl_num! { u16 }
impl_num! { u32 }
impl_num! { u64 }
impl_num! { usize }
impl_num! { f32 }
impl_num! { f64 }

impl<T> DefaultStrategy for *const T {
    type Strategy = proptest::strategy::Map<proptest::num::isize::Any, fn(isize) -> *const T>;
    fn default_strategy() -> Self::Strategy {
        fn map<T>(x: isize) -> *const T {
            x as _
        }
        use proptest::strategy::Strategy;
        proptest::num::isize::ANY.prop_map(map)
    }
}

impl<T> DefaultStrategy for *mut T {
    type Strategy = proptest::strategy::Map<proptest::num::isize::Any, fn(isize) -> *mut T>;
    fn default_strategy() -> Self::Strategy {
        fn map<T>(x: isize) -> *mut T {
            x as _
        }
        use proptest::strategy::Strategy;
        proptest::num::isize::ANY.prop_map(map)
    }
}

#[cfg(not(target_arch = "wasm32"))]
impl DefaultStrategy for u128 {
    type Strategy = proptest::num::u128::Any;
    fn default_strategy() -> Self::Strategy {
        proptest::num::u128::ANY
    }
}

#[cfg(not(target_arch = "wasm32"))]
impl DefaultStrategy for i128 {
    type Strategy = proptest::num::i128::Any;
    fn default_strategy() -> Self::Strategy {
        proptest::num::i128::ANY
    }
}

#[cfg(target_arch = "wasm32")]
impl DefaultStrategy for u128 {
    type Strategy = crate::wasm::u128::Any;
    fn default_strategy() -> Self::Strategy {
        crate::wasm::u128::ANY
    }
}

#[cfg(target_arch = "wasm32")]
impl DefaultStrategy for i128 {
    type Strategy = crate::wasm::i128::Any;
    fn default_strategy() -> Self::Strategy {
        crate::wasm::i128::ANY
    }
}

impl<T: core::fmt::Debug + DefaultStrategy, const LANES: usize> DefaultStrategy for [T; LANES] {
    type Strategy = crate::array::UniformArrayStrategy<T::Strategy, Self>;
    fn default_strategy() -> Self::Strategy {
        Self::Strategy::new(T::default_strategy())
    }
}

#[cfg(not(miri))]
pub fn make_runner() -> proptest::test_runner::TestRunner {
    Default::default()
}
#[cfg(miri)]
pub fn make_runner() -> proptest::test_runner::TestRunner {
    // Only run a few tests on Miri
    proptest::test_runner::TestRunner::new(proptest::test_runner::Config::with_cases(4))
}

/// Test a function that takes a single value.
pub fn test_1<A: core::fmt::Debug + DefaultStrategy>(
    f: &dyn Fn(A) -> proptest::test_runner::TestCaseResult,
) {
    let mut runner = make_runner();
    runner.run(&A::default_strategy(), f).unwrap();
}

/// Test a function that takes two values.
pub fn test_2<A: core::fmt::Debug + DefaultStrategy, B: core::fmt::Debug + DefaultStrategy>(
    f: &dyn Fn(A, B) -> proptest::test_runner::TestCaseResult,
) {
    let mut runner = make_runner();
    runner
        .run(&(A::default_strategy(), B::default_strategy()), |(a, b)| {
            f(a, b)
        })
        .unwrap();
}

/// Test a function that takes two values.
pub fn test_3<
    A: core::fmt::Debug + DefaultStrategy,
    B: core::fmt::Debug + DefaultStrategy,
    C: core::fmt::Debug + DefaultStrategy,
>(
    f: &dyn Fn(A, B, C) -> proptest::test_runner::TestCaseResult,
) {
    let mut runner = make_runner();
    runner
        .run(
            &(
                A::default_strategy(),
                B::default_strategy(),
                C::default_strategy(),
            ),
            |(a, b, c)| f(a, b, c),
        )
        .unwrap();
}

/// Test a unary vector function against a unary scalar function, applied elementwise.
pub fn test_unary_elementwise<Scalar, ScalarResult, Vector, VectorResult, const LANES: usize>(
    fv: &dyn Fn(Vector) -> VectorResult,
    fs: &dyn Fn(Scalar) -> ScalarResult,
    check: &dyn Fn([Scalar; LANES]) -> bool,
) where
    Scalar: Copy + core::fmt::Debug + DefaultStrategy,
    ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
    Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    test_1(&|x: [Scalar; LANES]| {
        proptest::prop_assume!(check(x));
        let result_1: [ScalarResult; LANES] = fv(x.into()).into();
        let result_2: [ScalarResult; LANES] = x
            .iter()
            .copied()
            .map(fs)
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        crate::prop_assert_biteq!(result_1, result_2);
        Ok(())
    });
}

/// Test a unary vector function against a unary scalar function, applied elementwise.
///
/// Where subnormals are flushed, use approximate equality.
pub fn test_unary_elementwise_flush_subnormals<
    Scalar,
    ScalarResult,
    Vector,
    VectorResult,
    const LANES: usize,
>(
    fv: &dyn Fn(Vector) -> VectorResult,
    fs: &dyn Fn(Scalar) -> ScalarResult,
    check: &dyn Fn([Scalar; LANES]) -> bool,
) where
    Scalar: Copy + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
    ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
    Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    let flush = |x: Scalar| subnormals::flush(fs(subnormals::flush_in(x)));
    test_1(&|x: [Scalar; LANES]| {
        proptest::prop_assume!(check(x));
        let result_v: [ScalarResult; LANES] = fv(x.into()).into();
        let result_s: [ScalarResult; LANES] = x
            .iter()
            .copied()
            .map(fs)
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        let result_sf: [ScalarResult; LANES] = x
            .iter()
            .copied()
            .map(flush)
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        crate::prop_assert_biteq!(result_v, result_s, result_sf);
        Ok(())
    });
}

/// Test a unary vector function against a unary scalar function, applied elementwise.
#[inline(never)]
pub fn test_unary_mask_elementwise<Scalar, Vector, Mask, const LANES: usize>(
    fv: &dyn Fn(Vector) -> Mask,
    fs: &dyn Fn(Scalar) -> bool,
    check: &dyn Fn([Scalar; LANES]) -> bool,
) where
    Scalar: Copy + core::fmt::Debug + DefaultStrategy,
    Vector: Into<[Scalar; LANES]> + From<[Scalar; LANES]> + Copy,
    Mask: Into<[bool; LANES]> + From<[bool; LANES]> + Copy,
{
    test_1(&|x: [Scalar; LANES]| {
        proptest::prop_assume!(check(x));
        let result_1: [bool; LANES] = fv(x.into()).into();
        let result_2: [bool; LANES] = {
            let mut result = [false; LANES];
            for (i, o) in x.iter().zip(result.iter_mut()) {
                *o = fs(*i);
            }
            result
        };
        crate::prop_assert_biteq!(result_1, result_2);
        Ok(())
    });
}

/// Test a binary vector function against a binary scalar function, applied elementwise.
pub fn test_binary_elementwise<
    Scalar1,
    Scalar2,
    ScalarResult,
    Vector1,
    Vector2,
    VectorResult,
    const LANES: usize,
>(
    fv: &dyn Fn(Vector1, Vector2) -> VectorResult,
    fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
    check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
    Scalar1: Copy + core::fmt::Debug + DefaultStrategy,
    Scalar2: Copy + core::fmt::Debug + DefaultStrategy,
    ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
    Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
    Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
        proptest::prop_assume!(check(x, y));
        let result_1: [ScalarResult; LANES] = fv(x.into(), y.into()).into();
        let result_2: [ScalarResult; LANES] = x
            .iter()
            .copied()
            .zip(y.iter().copied())
            .map(|(x, y)| fs(x, y))
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        crate::prop_assert_biteq!(result_1, result_2);
        Ok(())
    });
}

/// Test a binary vector function against a binary scalar function, applied elementwise.
///
/// Where subnormals are flushed, use approximate equality.
pub fn test_binary_elementwise_flush_subnormals<
    Scalar1,
    Scalar2,
    ScalarResult,
    Vector1,
    Vector2,
    VectorResult,
    const LANES: usize,
>(
    fv: &dyn Fn(Vector1, Vector2) -> VectorResult,
    fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
    check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
    Scalar1: Copy + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
    Scalar2: Copy + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
    ScalarResult: Copy + biteq::BitEq + core::fmt::Debug + DefaultStrategy + FlushSubnormals,
    Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
    Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    let flush = |x: Scalar1, y: Scalar2| {
        subnormals::flush(fs(subnormals::flush_in(x), subnormals::flush_in(y)))
    };
    test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
        proptest::prop_assume!(check(x, y));
        let result_v: [ScalarResult; LANES] = fv(x.into(), y.into()).into();
        let result_s: [ScalarResult; LANES] = x
            .iter()
            .copied()
            .zip(y.iter().copied())
            .map(|(x, y)| fs(x, y))
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        let result_sf: [ScalarResult; LANES] = x
            .iter()
            .copied()
            .zip(y.iter().copied())
            .map(|(x, y)| flush(x, y))
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        crate::prop_assert_biteq!(result_v, result_s, result_sf);
        Ok(())
    });
}

/// Test a unary vector function against a unary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_mask_elementwise<Scalar1, Scalar2, Vector1, Vector2, Mask, const LANES: usize>(
    fv: &dyn Fn(Vector1, Vector2) -> Mask,
    fs: &dyn Fn(Scalar1, Scalar2) -> bool,
    check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES]) -> bool,
) where
    Scalar1: Copy + core::fmt::Debug + DefaultStrategy,
    Scalar2: Copy + core::fmt::Debug + DefaultStrategy,
    Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
    Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
    Mask: Into<[bool; LANES]> + From<[bool; LANES]> + Copy,
{
    test_2(&|x: [Scalar1; LANES], y: [Scalar2; LANES]| {
        proptest::prop_assume!(check(x, y));
        let result_v: [bool; LANES] = fv(x.into(), y.into()).into();
        let result_s: [bool; LANES] = x
            .iter()
            .copied()
            .zip(y.iter().copied())
            .map(|(x, y)| fs(x, y))
            .collect::<Vec<_>>()
            .try_into()
            .unwrap();
        crate::prop_assert_biteq!(result_v, result_s);
        Ok(())
    });
}

/// Test a binary vector-scalar function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_scalar_rhs_elementwise<
    Scalar1,
    Scalar2,
    ScalarResult,
    Vector,
    VectorResult,
    const LANES: usize,
>(
    fv: &dyn Fn(Vector, Scalar2) -> VectorResult,
    fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
    check: &dyn Fn([Scalar1; LANES], Scalar2) -> bool,
) where
    Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
    Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
    ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
    Vector: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    test_2(&|x: [Scalar1; LANES], y: Scalar2| {
        proptest::prop_assume!(check(x, y));
        let result_1: [ScalarResult; LANES] = fv(x.into(), y).into();
        let result_2: [ScalarResult; LANES] = {
            let mut result = [ScalarResult::default(); LANES];
            for (i, o) in x.iter().zip(result.iter_mut()) {
                *o = fs(*i, y);
            }
            result
        };
        crate::prop_assert_biteq!(result_1, result_2);
        Ok(())
    });
}

/// Test a binary vector-scalar function against a binary scalar function, applied elementwise.
#[inline(never)]
pub fn test_binary_scalar_lhs_elementwise<
    Scalar1,
    Scalar2,
    ScalarResult,
    Vector,
    VectorResult,
    const LANES: usize,
>(
    fv: &dyn Fn(Scalar1, Vector) -> VectorResult,
    fs: &dyn Fn(Scalar1, Scalar2) -> ScalarResult,
    check: &dyn Fn(Scalar1, [Scalar2; LANES]) -> bool,
) where
    Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
    Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
    ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
    Vector: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    test_2(&|x: Scalar1, y: [Scalar2; LANES]| {
        proptest::prop_assume!(check(x, y));
        let result_1: [ScalarResult; LANES] = fv(x, y.into()).into();
        let result_2: [ScalarResult; LANES] = {
            let mut result = [ScalarResult::default(); LANES];
            for (i, o) in y.iter().zip(result.iter_mut()) {
                *o = fs(x, *i);
            }
            result
        };
        crate::prop_assert_biteq!(result_1, result_2);
        Ok(())
    });
}

/// Test a ternary vector function against a ternary scalar function, applied elementwise.
#[inline(never)]
pub fn test_ternary_elementwise<
    Scalar1,
    Scalar2,
    Scalar3,
    ScalarResult,
    Vector1,
    Vector2,
    Vector3,
    VectorResult,
    const LANES: usize,
>(
    fv: &dyn Fn(Vector1, Vector2, Vector3) -> VectorResult,
    fs: &dyn Fn(Scalar1, Scalar2, Scalar3) -> ScalarResult,
    check: &dyn Fn([Scalar1; LANES], [Scalar2; LANES], [Scalar3; LANES]) -> bool,
) where
    Scalar1: Copy + Default + core::fmt::Debug + DefaultStrategy,
    Scalar2: Copy + Default + core::fmt::Debug + DefaultStrategy,
    Scalar3: Copy + Default + core::fmt::Debug + DefaultStrategy,
    ScalarResult: Copy + Default + biteq::BitEq + core::fmt::Debug + DefaultStrategy,
    Vector1: Into<[Scalar1; LANES]> + From<[Scalar1; LANES]> + Copy,
    Vector2: Into<[Scalar2; LANES]> + From<[Scalar2; LANES]> + Copy,
    Vector3: Into<[Scalar3; LANES]> + From<[Scalar3; LANES]> + Copy,
    VectorResult: Into<[ScalarResult; LANES]> + From<[ScalarResult; LANES]> + Copy,
{
    test_3(
        &|x: [Scalar1; LANES], y: [Scalar2; LANES], z: [Scalar3; LANES]| {
            proptest::prop_assume!(check(x, y, z));
            let result_1: [ScalarResult; LANES] = fv(x.into(), y.into(), z.into()).into();
            let result_2: [ScalarResult; LANES] = {
                let mut result = [ScalarResult::default(); LANES];
                for ((i1, (i2, i3)), o) in
                    x.iter().zip(y.iter().zip(z.iter())).zip(result.iter_mut())
                {
                    *o = fs(*i1, *i2, *i3);
                }
                result
            };
            crate::prop_assert_biteq!(result_1, result_2);
            Ok(())
        },
    );
}

#[doc(hidden)]
#[macro_export]
macro_rules! test_lanes_helper {
    ($($(#[$meta:meta])* $fn_name:ident $lanes:literal;)+) => {
        $(
            #[test]
            $(#[$meta])*
            fn $fn_name() {
                implementation::<$lanes>();
            }
        )+
    };
    (
        $(#[$meta:meta])+;
        $($(#[$meta_before:meta])+ $fn_name_before:ident $lanes_before:literal;)*
        $fn_name:ident $lanes:literal;
        $($fn_name_rest:ident $lanes_rest:literal;)*
    ) => {
        $crate::test_lanes_helper!(
            $(#[$meta])+;
            $($(#[$meta_before])+ $fn_name_before $lanes_before;)*
            $(#[$meta])+ $fn_name $lanes;
            $($fn_name_rest $lanes_rest;)*
        );
    };
    (
        $(#[$meta_ignored:meta])+;
        $($(#[$meta:meta])+ $fn_name:ident $lanes:literal;)+
    ) => {
        $crate::test_lanes_helper!($($(#[$meta])+ $fn_name $lanes;)+);
    };
}

/// Expand a const-generic test into separate tests for each possible lane count.
#[macro_export]
macro_rules! test_lanes {
    {
        $(fn $test:ident<const $lanes:ident: usize>() $body:tt)*
    } => {
        $(
            mod $test {
                use super::*;

                fn implementation<const $lanes: usize>()
                where
                    core_simd::simd::LaneCount<$lanes>: core_simd::simd::SupportedLaneCount,
                $body

                #[cfg(target_arch = "wasm32")]
                wasm_bindgen_test::wasm_bindgen_test_configure!(run_in_browser);

                $crate::test_lanes_helper!(
                    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)];
                    lanes_1 1;
                    lanes_2 2;
                    // Cover an odd and an even non-power-of-2 length in Miri.
                    // (Even non-power-of-2 vectors have alignment between element
                    // and vector size, so we want to cover that case as well.)
                    lanes_3 3;

                    lanes_6 6;
                );

                #[cfg(not(miri))] // Miri intrinsic implementations are uniform and larger tests are sloooow
                $crate::test_lanes_helper!(
                    #[cfg_attr(target_arch = "wasm32", wasm_bindgen_test::wasm_bindgen_test)];
                    lanes_4 4;
                    lanes_5 5;

                    lanes_7 7;
                    lanes_8 8;
                    lanes_9 9;
                    lanes_10 10;
                    lanes_11 11;
                    lanes_12 12;
                    lanes_13 13;
                    lanes_14 14;
                    lanes_15 15;
                    lanes_16 16;
                    lanes_17 17;
                    //lanes_18 18;
                    //lanes_19 19;
                    //lanes_20 20;
                    //lanes_21 21;
                    //lanes_22 22;
                    //lanes_23 23;
                    lanes_24 24;
                    //lanes_25 25;
                    //lanes_26 26;
                    //lanes_27 27;
                    //lanes_28 28;
                    //lanes_29 29;
                    //lanes_30 30;
                    //lanes_31 31;
                    lanes_32 32;
                    //lanes_33 33;
                    //lanes_34 34;
                    //lanes_35 35;
                    //lanes_36 36;
                    //lanes_37 37;
                    //lanes_38 38;
                    //lanes_39 39;
                    //lanes_40 40;
                    //lanes_41 41;
                    //lanes_42 42;
                    //lanes_43 43;
                    //lanes_44 44;
                    //lanes_45 45;
                    //lanes_46 46;
                    lanes_47 47;
                    //lanes_48 48;
                    //lanes_49 49;
                    //lanes_50 50;
                    //lanes_51 51;
                    //lanes_52 52;
                    //lanes_53 53;
                    //lanes_54 54;
                    //lanes_55 55;
                    lanes_56 56;
                    lanes_57 57;
                    //lanes_58 58;
                    //lanes_59 59;
                    //lanes_60 60;
                    //lanes_61 61;
                    //lanes_62 62;
                    lanes_63 63;
                    lanes_64 64;
                );
            }
        )*
    }
}

/// Expand a const-generic `#[should_panic]` test into separate tests for each possible lane count.
#[macro_export]
macro_rules! test_lanes_panic {
    {
        $(fn $test:ident<const $lanes:ident: usize>() $body:tt)*
    } => {
        $(
            mod $test {
                use super::*;

                fn implementation<const $lanes: usize>()
                where
                    core_simd::simd::LaneCount<$lanes>: core_simd::simd::SupportedLaneCount,
                $body

                // test some odd and even non-power-of-2 lengths on miri
                $crate::test_lanes_helper!(
                    #[should_panic];
                    lanes_1 1;
                    lanes_2 2;
                    lanes_3 3;

                    lanes_6 6;
                );

                #[cfg(not(miri))] // Miri intrinsic implementations are uniform and larger tests are sloooow
                $crate::test_lanes_helper!(
                    #[should_panic];
                    lanes_4 4;
                    lanes_5 5;

                    lanes_7 7;
                    lanes_8 8;
                    lanes_9 9;
                    lanes_10 10;
                    lanes_11 11;
                    lanes_12 12;
                    lanes_13 13;
                    lanes_14 14;
                    lanes_15 15;
                    lanes_16 16;
                    lanes_17 17;
                    //lanes_18 18;
                    //lanes_19 19;
                    //lanes_20 20;
                    //lanes_21 21;
                    //lanes_22 22;
                    //lanes_23 23;
                    lanes_24 24;
                    //lanes_25 25;
                    //lanes_26 26;
                    //lanes_27 27;
                    //lanes_28 28;
                    //lanes_29 29;
                    //lanes_30 30;
                    //lanes_31 31;
                    lanes_32 32;
                    //lanes_33 33;
                    //lanes_34 34;
                    //lanes_35 35;
                    //lanes_36 36;
                    //lanes_37 37;
                    //lanes_38 38;
                    //lanes_39 39;
                    //lanes_40 40;
                    //lanes_41 41;
                    //lanes_42 42;
                    //lanes_43 43;
                    //lanes_44 44;
                    //lanes_45 45;
                    //lanes_46 46;
                    lanes_47 47;
                    //lanes_48 48;
                    //lanes_49 49;
                    //lanes_50 50;
                    //lanes_51 51;
                    //lanes_52 52;
                    //lanes_53 53;
                    //lanes_54 54;
                    //lanes_55 55;
                    lanes_56 56;
                    lanes_57 57;
                    //lanes_58 58;
                    //lanes_59 59;
                    //lanes_60 60;
                    //lanes_61 61;
                    //lanes_62 62;
                    lanes_63 63;
                    lanes_64 64;
                );
            }
        )*
    }
}