1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
use crate::simd::{LaneCount, Mask, MaskElement, Simd, SimdElement, SupportedLaneCount};
/// Constructs a new SIMD vector by copying elements from selected elements in other vectors.
///
/// When swizzling one vector, elements are selected like [`Swizzle::swizzle`].
///
/// When swizzling two vectors, elements are selected like [`Swizzle::concat_swizzle`].
///
/// # Examples
///
/// With a single SIMD vector, the const array specifies element indices in that vector:
/// ```
/// # #![feature(portable_simd)]
/// # use core::simd::{u32x2, u32x4, simd_swizzle};
/// let v = u32x4::from_array([10, 11, 12, 13]);
///
/// // Keeping the same size
/// let r: u32x4 = simd_swizzle!(v, [3, 0, 1, 2]);
/// assert_eq!(r.to_array(), [13, 10, 11, 12]);
///
/// // Changing the number of elements
/// let r: u32x2 = simd_swizzle!(v, [3, 1]);
/// assert_eq!(r.to_array(), [13, 11]);
/// ```
///
/// With two input SIMD vectors, the const array specifies element indices in the concatenation of
/// those vectors:
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::{u32x2, u32x4, simd_swizzle};
/// let a = u32x4::from_array([0, 1, 2, 3]);
/// let b = u32x4::from_array([4, 5, 6, 7]);
///
/// // Keeping the same size
/// let r: u32x4 = simd_swizzle!(a, b, [0, 1, 6, 7]);
/// assert_eq!(r.to_array(), [0, 1, 6, 7]);
///
/// // Changing the number of elements
/// let r: u32x2 = simd_swizzle!(a, b, [0, 4]);
/// assert_eq!(r.to_array(), [0, 4]);
/// ```
#[allow(unused_macros)]
pub macro simd_swizzle {
(
$vector:expr, $index:expr $(,)?
) => {
{
use $crate::simd::Swizzle;
struct Impl;
impl Swizzle<{$index.len()}> for Impl {
const INDEX: [usize; {$index.len()}] = $index;
}
Impl::swizzle($vector)
}
},
(
$first:expr, $second:expr, $index:expr $(,)?
) => {
{
use $crate::simd::Swizzle;
struct Impl;
impl Swizzle<{$index.len()}> for Impl {
const INDEX: [usize; {$index.len()}] = $index;
}
Impl::concat_swizzle($first, $second)
}
}
}
/// Create a vector from the elements of another vector.
pub trait Swizzle<const N: usize> {
/// Map from the elements of the input vector to the output vector.
const INDEX: [usize; N];
/// Create a new vector from the elements of `vector`.
///
/// Lane `i` of the output is `vector[Self::INDEX[i]]`.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
fn swizzle<T, const M: usize>(vector: Simd<T, M>) -> Simd<T, N>
where
T: SimdElement,
LaneCount<N>: SupportedLaneCount,
LaneCount<M>: SupportedLaneCount,
{
// Safety: `vector` is a vector, and the index is a const array of u32.
unsafe {
core::intrinsics::simd::simd_shuffle(
vector,
vector,
const {
let mut output = [0; N];
let mut i = 0;
while i < N {
let index = Self::INDEX[i];
assert!(index as u32 as usize == index);
assert!(
index < M,
"source element index exceeds input vector length"
);
output[i] = index as u32;
i += 1;
}
output
},
)
}
}
/// Create a new vector from the elements of `first` and `second`.
///
/// Lane `i` of the output is `concat[Self::INDEX[i]]`, where `concat` is the concatenation of
/// `first` and `second`.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
fn concat_swizzle<T, const M: usize>(first: Simd<T, M>, second: Simd<T, M>) -> Simd<T, N>
where
T: SimdElement,
LaneCount<N>: SupportedLaneCount,
LaneCount<M>: SupportedLaneCount,
{
// Safety: `first` and `second` are vectors, and the index is a const array of u32.
unsafe {
core::intrinsics::simd::simd_shuffle(
first,
second,
const {
let mut output = [0; N];
let mut i = 0;
while i < N {
let index = Self::INDEX[i];
assert!(index as u32 as usize == index);
assert!(
index < 2 * M,
"source element index exceeds input vector length"
);
output[i] = index as u32;
i += 1;
}
output
},
)
}
}
/// Create a new mask from the elements of `mask`.
///
/// Element `i` of the output is `mask[Self::INDEX[i]]`.
#[inline]
#[must_use = "method returns a new mask and does not mutate the original inputs"]
fn swizzle_mask<T, const M: usize>(mask: Mask<T, M>) -> Mask<T, N>
where
T: MaskElement,
LaneCount<N>: SupportedLaneCount,
LaneCount<M>: SupportedLaneCount,
{
// SAFETY: all elements of this mask come from another mask
unsafe { Mask::from_int_unchecked(Self::swizzle(mask.to_int())) }
}
/// Create a new mask from the elements of `first` and `second`.
///
/// Element `i` of the output is `concat[Self::INDEX[i]]`, where `concat` is the concatenation of
/// `first` and `second`.
#[inline]
#[must_use = "method returns a new mask and does not mutate the original inputs"]
fn concat_swizzle_mask<T, const M: usize>(first: Mask<T, M>, second: Mask<T, M>) -> Mask<T, N>
where
T: MaskElement,
LaneCount<N>: SupportedLaneCount,
LaneCount<M>: SupportedLaneCount,
{
// SAFETY: all elements of this mask come from another mask
unsafe { Mask::from_int_unchecked(Self::concat_swizzle(first.to_int(), second.to_int())) }
}
}
impl<T, const N: usize> Simd<T, N>
where
T: SimdElement,
LaneCount<N>: SupportedLaneCount,
{
/// Reverse the order of the elements in the vector.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn reverse(self) -> Self {
struct Reverse;
impl<const N: usize> Swizzle<N> for Reverse {
const INDEX: [usize; N] = const {
let mut index = [0; N];
let mut i = 0;
while i < N {
index[i] = N - i - 1;
i += 1;
}
index
};
}
Reverse::swizzle(self)
}
/// Rotates the vector such that the first `OFFSET` elements of the slice move to the end
/// while the last `self.len() - OFFSET` elements move to the front. After calling `rotate_elements_left`,
/// the element previously at index `OFFSET` will become the first element in the slice.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn rotate_elements_left<const OFFSET: usize>(self) -> Self {
struct Rotate<const OFFSET: usize>;
impl<const OFFSET: usize, const N: usize> Swizzle<N> for Rotate<OFFSET> {
const INDEX: [usize; N] = const {
let offset = OFFSET % N;
let mut index = [0; N];
let mut i = 0;
while i < N {
index[i] = (i + offset) % N;
i += 1;
}
index
};
}
Rotate::<OFFSET>::swizzle(self)
}
/// Rotates the vector such that the first `self.len() - OFFSET` elements of the vector move to
/// the end while the last `OFFSET` elements move to the front. After calling `rotate_elements_right`,
/// the element previously at index `self.len() - OFFSET` will become the first element in the slice.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn rotate_elements_right<const OFFSET: usize>(self) -> Self {
struct Rotate<const OFFSET: usize>;
impl<const OFFSET: usize, const N: usize> Swizzle<N> for Rotate<OFFSET> {
const INDEX: [usize; N] = const {
let offset = N - OFFSET % N;
let mut index = [0; N];
let mut i = 0;
while i < N {
index[i] = (i + offset) % N;
i += 1;
}
index
};
}
Rotate::<OFFSET>::swizzle(self)
}
/// Shifts the vector elements to the left by `OFFSET`, filling in with
/// `padding` from the right.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn shift_elements_left<const OFFSET: usize>(self, padding: T) -> Self {
struct Shift<const OFFSET: usize>;
impl<const OFFSET: usize, const N: usize> Swizzle<N> for Shift<OFFSET> {
const INDEX: [usize; N] = const {
let mut index = [N; N];
let mut i = 0;
while i + OFFSET < N {
index[i] = i + OFFSET;
i += 1;
}
index
};
}
Shift::<OFFSET>::concat_swizzle(self, Simd::splat(padding))
}
/// Shifts the vector elements to the right by `OFFSET`, filling in with
/// `padding` from the left.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn shift_elements_right<const OFFSET: usize>(self, padding: T) -> Self {
struct Shift<const OFFSET: usize>;
impl<const OFFSET: usize, const N: usize> Swizzle<N> for Shift<OFFSET> {
const INDEX: [usize; N] = const {
let mut index = [N; N];
let mut i = OFFSET;
while i < N {
index[i] = i - OFFSET;
i += 1;
}
index
};
}
Shift::<OFFSET>::concat_swizzle(self, Simd::splat(padding))
}
/// Interleave two vectors.
///
/// The resulting vectors contain elements taken alternatively from `self` and `other`, first
/// filling the first result, and then the second.
///
/// The reverse of this operation is [`Simd::deinterleave`].
///
/// ```
/// # #![feature(portable_simd)]
/// # use core::simd::Simd;
/// let a = Simd::from_array([0, 1, 2, 3]);
/// let b = Simd::from_array([4, 5, 6, 7]);
/// let (x, y) = a.interleave(b);
/// assert_eq!(x.to_array(), [0, 4, 1, 5]);
/// assert_eq!(y.to_array(), [2, 6, 3, 7]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn interleave(self, other: Self) -> (Self, Self) {
const fn interleave<const N: usize>(high: bool) -> [usize; N] {
let mut idx = [0; N];
let mut i = 0;
while i < N {
let dst_index = if high { i + N } else { i };
let src_index = dst_index / 2 + (dst_index % 2) * N;
idx[i] = src_index;
i += 1;
}
idx
}
struct Lo;
struct Hi;
impl<const N: usize> Swizzle<N> for Lo {
const INDEX: [usize; N] = interleave::<N>(false);
}
impl<const N: usize> Swizzle<N> for Hi {
const INDEX: [usize; N] = interleave::<N>(true);
}
(
Lo::concat_swizzle(self, other),
Hi::concat_swizzle(self, other),
)
}
/// Deinterleave two vectors.
///
/// The first result takes every other element of `self` and then `other`, starting with
/// the first element.
///
/// The second result takes every other element of `self` and then `other`, starting with
/// the second element.
///
/// The reverse of this operation is [`Simd::interleave`].
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::Simd;
/// let a = Simd::from_array([0, 4, 1, 5]);
/// let b = Simd::from_array([2, 6, 3, 7]);
/// let (x, y) = a.deinterleave(b);
/// assert_eq!(x.to_array(), [0, 1, 2, 3]);
/// assert_eq!(y.to_array(), [4, 5, 6, 7]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn deinterleave(self, other: Self) -> (Self, Self) {
const fn deinterleave<const N: usize>(second: bool) -> [usize; N] {
let mut idx = [0; N];
let mut i = 0;
while i < N {
idx[i] = i * 2 + second as usize;
i += 1;
}
idx
}
struct Even;
struct Odd;
impl<const N: usize> Swizzle<N> for Even {
const INDEX: [usize; N] = deinterleave::<N>(false);
}
impl<const N: usize> Swizzle<N> for Odd {
const INDEX: [usize; N] = deinterleave::<N>(true);
}
(
Even::concat_swizzle(self, other),
Odd::concat_swizzle(self, other),
)
}
/// Resize a vector.
///
/// If `M` > `N`, extends the length of a vector, setting the new elements to `value`.
/// If `M` < `N`, truncates the vector to the first `M` elements.
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::u32x4;
/// let x = u32x4::from_array([0, 1, 2, 3]);
/// assert_eq!(x.resize::<8>(9).to_array(), [0, 1, 2, 3, 9, 9, 9, 9]);
/// assert_eq!(x.resize::<2>(9).to_array(), [0, 1]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn resize<const M: usize>(self, value: T) -> Simd<T, M>
where
LaneCount<M>: SupportedLaneCount,
{
struct Resize<const N: usize>;
impl<const N: usize, const M: usize> Swizzle<M> for Resize<N> {
const INDEX: [usize; M] = const {
let mut index = [0; M];
let mut i = 0;
while i < M {
index[i] = if i < N { i } else { N };
i += 1;
}
index
};
}
Resize::<N>::concat_swizzle(self, Simd::splat(value))
}
/// Extract a vector from another vector.
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::u32x4;
/// let x = u32x4::from_array([0, 1, 2, 3]);
/// assert_eq!(x.extract::<1, 2>().to_array(), [1, 2]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn extract<const START: usize, const LEN: usize>(self) -> Simd<T, LEN>
where
LaneCount<LEN>: SupportedLaneCount,
{
struct Extract<const N: usize, const START: usize>;
impl<const N: usize, const START: usize, const LEN: usize> Swizzle<LEN> for Extract<N, START> {
const INDEX: [usize; LEN] = const {
assert!(START + LEN <= N, "index out of bounds");
let mut index = [0; LEN];
let mut i = 0;
while i < LEN {
index[i] = START + i;
i += 1;
}
index
};
}
Extract::<N, START>::swizzle(self)
}
}
impl<T, const N: usize> Mask<T, N>
where
T: MaskElement,
LaneCount<N>: SupportedLaneCount,
{
/// Reverse the order of the elements in the mask.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn reverse(self) -> Self {
// Safety: swizzles are safe for masks
unsafe { Self::from_int_unchecked(self.to_int().reverse()) }
}
/// Rotates the mask such that the first `OFFSET` elements of the slice move to the end
/// while the last `self.len() - OFFSET` elements move to the front. After calling `rotate_elements_left`,
/// the element previously at index `OFFSET` will become the first element in the slice.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn rotate_elements_left<const OFFSET: usize>(self) -> Self {
// Safety: swizzles are safe for masks
unsafe { Self::from_int_unchecked(self.to_int().rotate_elements_left::<OFFSET>()) }
}
/// Rotates the mask such that the first `self.len() - OFFSET` elements of the mask move to
/// the end while the last `OFFSET` elements move to the front. After calling `rotate_elements_right`,
/// the element previously at index `self.len() - OFFSET` will become the first element in the slice.
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn rotate_elements_right<const OFFSET: usize>(self) -> Self {
// Safety: swizzles are safe for masks
unsafe { Self::from_int_unchecked(self.to_int().rotate_elements_right::<OFFSET>()) }
}
/// Shifts the mask elements to the left by `OFFSET`, filling in with
/// `padding` from the right.
#[inline]
#[must_use = "method returns a new mask and does not mutate the original inputs"]
pub fn shift_elements_left<const OFFSET: usize>(self, padding: bool) -> Self {
// Safety: swizzles are safe for masks
unsafe {
Self::from_int_unchecked(self.to_int().shift_elements_left::<OFFSET>(if padding {
T::TRUE
} else {
T::FALSE
}))
}
}
/// Shifts the mask elements to the right by `OFFSET`, filling in with
/// `padding` from the left.
#[inline]
#[must_use = "method returns a new mask and does not mutate the original inputs"]
pub fn shift_elements_right<const OFFSET: usize>(self, padding: bool) -> Self {
// Safety: swizzles are safe for masks
unsafe {
Self::from_int_unchecked(self.to_int().shift_elements_right::<OFFSET>(if padding {
T::TRUE
} else {
T::FALSE
}))
}
}
/// Interleave two masks.
///
/// The resulting masks contain elements taken alternatively from `self` and `other`, first
/// filling the first result, and then the second.
///
/// The reverse of this operation is [`Mask::deinterleave`].
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::mask32x4;
/// let a = mask32x4::from_array([false, true, false, true]);
/// let b = mask32x4::from_array([false, false, true, true]);
/// let (x, y) = a.interleave(b);
/// assert_eq!(x.to_array(), [false, false, true, false]);
/// assert_eq!(y.to_array(), [false, true, true, true]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn interleave(self, other: Self) -> (Self, Self) {
let (lo, hi) = self.to_int().interleave(other.to_int());
// Safety: swizzles are safe for masks
unsafe { (Self::from_int_unchecked(lo), Self::from_int_unchecked(hi)) }
}
/// Deinterleave two masks.
///
/// The first result takes every other element of `self` and then `other`, starting with
/// the first element.
///
/// The second result takes every other element of `self` and then `other`, starting with
/// the second element.
///
/// The reverse of this operation is [`Mask::interleave`].
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::mask32x4;
/// let a = mask32x4::from_array([false, true, false, true]);
/// let b = mask32x4::from_array([false, false, true, true]);
/// let (x, y) = a.deinterleave(b);
/// assert_eq!(x.to_array(), [false, false, false, true]);
/// assert_eq!(y.to_array(), [true, true, false, true]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn deinterleave(self, other: Self) -> (Self, Self) {
let (even, odd) = self.to_int().deinterleave(other.to_int());
// Safety: swizzles are safe for masks
unsafe {
(
Self::from_int_unchecked(even),
Self::from_int_unchecked(odd),
)
}
}
/// Resize a mask.
///
/// If `M` > `N`, extends the length of a mask, setting the new elements to `value`.
/// If `M` < `N`, truncates the mask to the first `M` elements.
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::mask32x4;
/// let x = mask32x4::from_array([false, true, true, false]);
/// assert_eq!(x.resize::<8>(true).to_array(), [false, true, true, false, true, true, true, true]);
/// assert_eq!(x.resize::<2>(true).to_array(), [false, true]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn resize<const M: usize>(self, value: bool) -> Mask<T, M>
where
LaneCount<M>: SupportedLaneCount,
{
// Safety: swizzles are safe for masks
unsafe {
Mask::<T, M>::from_int_unchecked(self.to_int().resize::<M>(if value {
T::TRUE
} else {
T::FALSE
}))
}
}
/// Extract a vector from another vector.
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::mask32x4;
/// let x = mask32x4::from_array([false, true, true, false]);
/// assert_eq!(x.extract::<1, 2>().to_array(), [true, true]);
/// ```
#[inline]
#[must_use = "method returns a new vector and does not mutate the original inputs"]
pub fn extract<const START: usize, const LEN: usize>(self) -> Mask<T, LEN>
where
LaneCount<LEN>: SupportedLaneCount,
{
// Safety: swizzles are safe for masks
unsafe { Mask::<T, LEN>::from_int_unchecked(self.to_int().extract::<START, LEN>()) }
}
}