hir/
term_search.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
//! Term search

use hir_def::type_ref::Mutability;
use hir_ty::db::HirDatabase;
use itertools::Itertools;
use rustc_hash::{FxHashMap, FxHashSet};

use crate::{ModuleDef, ScopeDef, Semantics, SemanticsScope, Type};

mod expr;
pub use expr::Expr;

mod tactics;

/// Key for lookup table to query new types reached.
#[derive(Debug, Hash, PartialEq, Eq)]
enum NewTypesKey {
    ImplMethod,
    StructProjection,
}

/// Helper enum to squash big number of alternative trees into `Many` variant as there is too many
/// to take into account.
#[derive(Debug)]
enum AlternativeExprs {
    /// There are few trees, so we keep track of them all
    Few(FxHashSet<Expr>),
    /// There are too many trees to keep track of
    Many,
}

impl AlternativeExprs {
    /// Construct alternative trees
    ///
    /// # Arguments
    /// `threshold` - threshold value for many trees (more than that is many)
    /// `exprs` - expressions iterator
    fn new(threshold: usize, exprs: impl Iterator<Item = Expr>) -> AlternativeExprs {
        let mut it = AlternativeExprs::Few(Default::default());
        it.extend_with_threshold(threshold, exprs);
        it
    }

    /// Get type trees stored in alternative trees (or `Expr::Many` in case of many)
    ///
    /// # Arguments
    /// `ty` - Type of expressions queried (this is used to give type to `Expr::Many`)
    fn exprs(&self, ty: &Type) -> Vec<Expr> {
        match self {
            AlternativeExprs::Few(exprs) => exprs.iter().cloned().collect(),
            AlternativeExprs::Many => vec![Expr::Many(ty.clone())],
        }
    }

    /// Extend alternative expressions
    ///
    /// # Arguments
    /// `threshold` - threshold value for many trees (more than that is many)
    /// `exprs` - expressions iterator
    fn extend_with_threshold(&mut self, threshold: usize, exprs: impl Iterator<Item = Expr>) {
        match self {
            AlternativeExprs::Few(tts) => {
                for it in exprs {
                    if tts.len() > threshold {
                        *self = AlternativeExprs::Many;
                        break;
                    }

                    tts.insert(it);
                }
            }
            AlternativeExprs::Many => (),
        }
    }

    fn is_many(&self) -> bool {
        matches!(self, AlternativeExprs::Many)
    }
}

/// # Lookup table for term search
///
/// Lookup table keeps all the state during term search.
/// This means it knows what types and how are reachable.
///
/// The secondary functionality for lookup table is to keep track of new types reached since last
/// iteration as well as keeping track of which `ScopeDef` items have been used.
/// Both of them are to speed up the term search by leaving out types / ScopeDefs that likely do
/// not produce any new results.
#[derive(Default, Debug)]
struct LookupTable {
    /// All the `Expr`s in "value" produce the type of "key"
    data: FxHashMap<Type, AlternativeExprs>,
    /// New types reached since last query by the `NewTypesKey`
    new_types: FxHashMap<NewTypesKey, Vec<Type>>,
    /// Types queried but not present
    types_wishlist: FxHashSet<Type>,
    /// Threshold to squash trees to `Many`
    many_threshold: usize,
}

impl LookupTable {
    /// Initialize lookup table
    fn new(many_threshold: usize, goal: Type) -> Self {
        let mut res = Self { many_threshold, ..Default::default() };
        res.new_types.insert(NewTypesKey::ImplMethod, Vec::new());
        res.new_types.insert(NewTypesKey::StructProjection, Vec::new());
        res.types_wishlist.insert(goal);
        res
    }

    /// Find all `Expr`s that unify with the `ty`
    fn find(&mut self, db: &dyn HirDatabase, ty: &Type) -> Option<Vec<Expr>> {
        let res = self
            .data
            .iter()
            .find(|(t, _)| t.could_unify_with_deeply(db, ty))
            .map(|(t, tts)| tts.exprs(t));

        if res.is_none() {
            self.types_wishlist.insert(ty.clone());
        }

        // Collapse suggestions if there are many
        if let Some(res) = &res {
            if res.len() > self.many_threshold {
                return Some(vec![Expr::Many(ty.clone())]);
            }
        }

        res
    }

    /// Same as find but automatically creates shared reference of types in the lookup
    ///
    /// For example if we have type `i32` in data and we query for `&i32` it map all the type
    /// trees we have for `i32` with `Expr::Reference` and returns them.
    fn find_autoref(&mut self, db: &dyn HirDatabase, ty: &Type) -> Option<Vec<Expr>> {
        let res = self
            .data
            .iter()
            .find(|(t, _)| t.could_unify_with_deeply(db, ty))
            .map(|(t, it)| it.exprs(t))
            .or_else(|| {
                self.data
                    .iter()
                    .find(|(t, _)| {
                        Type::reference(t, Mutability::Shared).could_unify_with_deeply(db, ty)
                    })
                    .map(|(t, it)| {
                        it.exprs(t)
                            .into_iter()
                            .map(|expr| Expr::Reference(Box::new(expr)))
                            .collect()
                    })
            });

        if res.is_none() {
            self.types_wishlist.insert(ty.clone());
        }

        // Collapse suggestions if there are many
        if let Some(res) = &res {
            if res.len() > self.many_threshold {
                return Some(vec![Expr::Many(ty.clone())]);
            }
        }

        res
    }

    /// Insert new type trees for type
    ///
    /// Note that the types have to be the same, unification is not enough as unification is not
    /// transitive. For example Vec<i32> and FxHashSet<i32> both unify with Iterator<Item = i32>,
    /// but they clearly do not unify themselves.
    fn insert(&mut self, ty: Type, exprs: impl Iterator<Item = Expr>) {
        match self.data.get_mut(&ty) {
            Some(it) => {
                it.extend_with_threshold(self.many_threshold, exprs);
                if it.is_many() {
                    self.types_wishlist.remove(&ty);
                }
            }
            None => {
                self.data.insert(ty.clone(), AlternativeExprs::new(self.many_threshold, exprs));
                for it in self.new_types.values_mut() {
                    it.push(ty.clone());
                }
            }
        }
    }

    /// Iterate all the reachable types
    fn iter_types(&self) -> impl Iterator<Item = Type> + '_ {
        self.data.keys().cloned()
    }

    /// Query new types reached since last query by key
    ///
    /// Create new key if you wish to query it to avoid conflicting with existing queries.
    fn new_types(&mut self, key: NewTypesKey) -> Vec<Type> {
        match self.new_types.get_mut(&key) {
            Some(it) => std::mem::take(it),
            None => Vec::new(),
        }
    }

    /// Types queried but not found
    fn types_wishlist(&mut self) -> &FxHashSet<Type> {
        &self.types_wishlist
    }
}

/// Context for the `term_search` function
#[derive(Debug)]
pub struct TermSearchCtx<'a, DB: HirDatabase> {
    /// Semantics for the program
    pub sema: &'a Semantics<'a, DB>,
    /// Semantic scope, captures context for the term search
    pub scope: &'a SemanticsScope<'a>,
    /// Target / expected output type
    pub goal: Type,
    /// Configuration for term search
    pub config: TermSearchConfig,
}

/// Configuration options for the term search
#[derive(Debug, Clone, Copy)]
pub struct TermSearchConfig {
    /// Enable borrow checking, this guarantees the outputs of the `term_search` to borrow-check
    pub enable_borrowcheck: bool,
    /// Indicate when to squash multiple trees to `Many` as there are too many to keep track
    pub many_alternatives_threshold: usize,
    /// Fuel for term search in "units of work"
    pub fuel: u64,
}

impl Default for TermSearchConfig {
    fn default() -> Self {
        Self { enable_borrowcheck: true, many_alternatives_threshold: 1, fuel: 1200 }
    }
}

/// # Term search
///
/// Search for terms (expressions) that unify with the `goal` type.
///
/// # Arguments
/// * `ctx` - Context for term search
///
/// Internally this function uses Breadth First Search to find path to `goal` type.
/// The general idea is following:
/// 1. Populate lookup (frontier for BFS) from values (local variables, statics, constants, etc)
///    as well as from well knows values (such as `true/false` and `()`)
/// 2. Iteratively expand the frontier (or contents of the lookup) by trying different type
///    transformation tactics. For example functions take as from set of types (arguments) to some
///    type (return type). Other transformations include methods on type, type constructors and
///    projections to struct fields (field access).
/// 3. If we run out of fuel (term search takes too long) we stop iterating.
/// 4. Return all the paths (type trees) that take us to the `goal` type.
///
/// Note that there are usually more ways we can get to the `goal` type but some are discarded to
/// reduce the memory consumption. It is also unlikely anyone is willing ti browse through
/// thousands of possible responses so we currently take first 10 from every tactic.
pub fn term_search<DB: HirDatabase>(ctx: &TermSearchCtx<'_, DB>) -> Vec<Expr> {
    let module = ctx.scope.module();
    let mut defs = FxHashSet::default();
    defs.insert(ScopeDef::ModuleDef(ModuleDef::Module(module)));

    ctx.scope.process_all_names(&mut |_, def| {
        defs.insert(def);
    });

    let mut lookup = LookupTable::new(ctx.config.many_alternatives_threshold, ctx.goal.clone());
    let fuel = std::cell::Cell::new(ctx.config.fuel);

    let should_continue = &|| {
        let remaining = fuel.get();
        fuel.set(remaining.saturating_sub(1));
        if remaining == 0 {
            tracing::debug!("fuel exhausted");
        }
        remaining > 0
    };

    // Try trivial tactic first, also populates lookup table
    let mut solutions: Vec<Expr> = tactics::trivial(ctx, &defs, &mut lookup).collect();
    // Use well known types tactic before iterations as it does not depend on other tactics
    solutions.extend(tactics::famous_types(ctx, &defs, &mut lookup));
    solutions.extend(tactics::assoc_const(ctx, &defs, &mut lookup));

    while should_continue() {
        solutions.extend(tactics::data_constructor(ctx, &defs, &mut lookup, should_continue));
        solutions.extend(tactics::free_function(ctx, &defs, &mut lookup, should_continue));
        solutions.extend(tactics::impl_method(ctx, &defs, &mut lookup, should_continue));
        solutions.extend(tactics::struct_projection(ctx, &defs, &mut lookup, should_continue));
        solutions.extend(tactics::impl_static_method(ctx, &defs, &mut lookup, should_continue));
        solutions.extend(tactics::make_tuple(ctx, &defs, &mut lookup, should_continue));
    }

    solutions.into_iter().filter(|it| !it.is_many()).unique().collect()
}