1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
//! Term search
use hir_def::type_ref::Mutability;
use hir_ty::db::HirDatabase;
use itertools::Itertools;
use rustc_hash::{FxHashMap, FxHashSet};
use crate::{ModuleDef, ScopeDef, Semantics, SemanticsScope, Type};
mod expr;
pub use expr::Expr;
mod tactics;
/// Key for lookup table to query new types reached.
#[derive(Debug, Hash, PartialEq, Eq)]
enum NewTypesKey {
ImplMethod,
StructProjection,
}
/// Helper enum to squash big number of alternative trees into `Many` variant as there is too many
/// to take into account.
#[derive(Debug)]
enum AlternativeExprs {
/// There are few trees, so we keep track of them all
Few(FxHashSet<Expr>),
/// There are too many trees to keep track of
Many,
}
impl AlternativeExprs {
/// Construct alternative trees
///
/// # Arguments
/// `threshold` - threshold value for many trees (more than that is many)
/// `exprs` - expressions iterator
fn new(threshold: usize, exprs: impl Iterator<Item = Expr>) -> AlternativeExprs {
let mut it = AlternativeExprs::Few(Default::default());
it.extend_with_threshold(threshold, exprs);
it
}
/// Get type trees stored in alternative trees (or `Expr::Many` in case of many)
///
/// # Arguments
/// `ty` - Type of expressions queried (this is used to give type to `Expr::Many`)
fn exprs(&self, ty: &Type) -> Vec<Expr> {
match self {
AlternativeExprs::Few(exprs) => exprs.iter().cloned().collect(),
AlternativeExprs::Many => vec![Expr::Many(ty.clone())],
}
}
/// Extend alternative expressions
///
/// # Arguments
/// `threshold` - threshold value for many trees (more than that is many)
/// `exprs` - expressions iterator
fn extend_with_threshold(&mut self, threshold: usize, exprs: impl Iterator<Item = Expr>) {
match self {
AlternativeExprs::Few(tts) => {
for it in exprs {
if tts.len() > threshold {
*self = AlternativeExprs::Many;
break;
}
tts.insert(it);
}
}
AlternativeExprs::Many => (),
}
}
fn is_many(&self) -> bool {
matches!(self, AlternativeExprs::Many)
}
}
/// # Lookup table for term search
///
/// Lookup table keeps all the state during term search.
/// This means it knows what types and how are reachable.
///
/// The secondary functionality for lookup table is to keep track of new types reached since last
/// iteration as well as keeping track of which `ScopeDef` items have been used.
/// Both of them are to speed up the term search by leaving out types / ScopeDefs that likely do
/// not produce any new results.
#[derive(Default, Debug)]
struct LookupTable {
/// All the `Expr`s in "value" produce the type of "key"
data: FxHashMap<Type, AlternativeExprs>,
/// New types reached since last query by the `NewTypesKey`
new_types: FxHashMap<NewTypesKey, Vec<Type>>,
/// Types queried but not present
types_wishlist: FxHashSet<Type>,
/// Threshold to squash trees to `Many`
many_threshold: usize,
}
impl LookupTable {
/// Initialize lookup table
fn new(many_threshold: usize, goal: Type) -> Self {
let mut res = Self { many_threshold, ..Default::default() };
res.new_types.insert(NewTypesKey::ImplMethod, Vec::new());
res.new_types.insert(NewTypesKey::StructProjection, Vec::new());
res.types_wishlist.insert(goal);
res
}
/// Find all `Expr`s that unify with the `ty`
fn find(&mut self, db: &dyn HirDatabase, ty: &Type) -> Option<Vec<Expr>> {
let res = self
.data
.iter()
.find(|(t, _)| t.could_unify_with_deeply(db, ty))
.map(|(t, tts)| tts.exprs(t));
if res.is_none() {
self.types_wishlist.insert(ty.clone());
}
// Collapse suggestions if there are many
if let Some(res) = &res {
if res.len() > self.many_threshold {
return Some(vec![Expr::Many(ty.clone())]);
}
}
res
}
/// Same as find but automatically creates shared reference of types in the lookup
///
/// For example if we have type `i32` in data and we query for `&i32` it map all the type
/// trees we have for `i32` with `Expr::Reference` and returns them.
fn find_autoref(&mut self, db: &dyn HirDatabase, ty: &Type) -> Option<Vec<Expr>> {
let res = self
.data
.iter()
.find(|(t, _)| t.could_unify_with_deeply(db, ty))
.map(|(t, it)| it.exprs(t))
.or_else(|| {
self.data
.iter()
.find(|(t, _)| {
Type::reference(t, Mutability::Shared).could_unify_with_deeply(db, ty)
})
.map(|(t, it)| {
it.exprs(t)
.into_iter()
.map(|expr| Expr::Reference(Box::new(expr)))
.collect()
})
});
if res.is_none() {
self.types_wishlist.insert(ty.clone());
}
// Collapse suggestions if there are many
if let Some(res) = &res {
if res.len() > self.many_threshold {
return Some(vec![Expr::Many(ty.clone())]);
}
}
res
}
/// Insert new type trees for type
///
/// Note that the types have to be the same, unification is not enough as unification is not
/// transitive. For example Vec<i32> and FxHashSet<i32> both unify with Iterator<Item = i32>,
/// but they clearly do not unify themselves.
fn insert(&mut self, ty: Type, exprs: impl Iterator<Item = Expr>) {
match self.data.get_mut(&ty) {
Some(it) => {
it.extend_with_threshold(self.many_threshold, exprs);
if it.is_many() {
self.types_wishlist.remove(&ty);
}
}
None => {
self.data.insert(ty.clone(), AlternativeExprs::new(self.many_threshold, exprs));
for it in self.new_types.values_mut() {
it.push(ty.clone());
}
}
}
}
/// Iterate all the reachable types
fn iter_types(&self) -> impl Iterator<Item = Type> + '_ {
self.data.keys().cloned()
}
/// Query new types reached since last query by key
///
/// Create new key if you wish to query it to avoid conflicting with existing queries.
fn new_types(&mut self, key: NewTypesKey) -> Vec<Type> {
match self.new_types.get_mut(&key) {
Some(it) => std::mem::take(it),
None => Vec::new(),
}
}
/// Types queried but not found
fn types_wishlist(&mut self) -> &FxHashSet<Type> {
&self.types_wishlist
}
}
/// Context for the `term_search` function
#[derive(Debug)]
pub struct TermSearchCtx<'a, DB: HirDatabase> {
/// Semantics for the program
pub sema: &'a Semantics<'a, DB>,
/// Semantic scope, captures context for the term search
pub scope: &'a SemanticsScope<'a>,
/// Target / expected output type
pub goal: Type,
/// Configuration for term search
pub config: TermSearchConfig,
}
/// Configuration options for the term search
#[derive(Debug, Clone, Copy)]
pub struct TermSearchConfig {
/// Enable borrow checking, this guarantees the outputs of the `term_search` to borrow-check
pub enable_borrowcheck: bool,
/// Indicate when to squash multiple trees to `Many` as there are too many to keep track
pub many_alternatives_threshold: usize,
/// Fuel for term search in "units of work"
pub fuel: u64,
}
impl Default for TermSearchConfig {
fn default() -> Self {
Self { enable_borrowcheck: true, many_alternatives_threshold: 1, fuel: 1200 }
}
}
/// # Term search
///
/// Search for terms (expressions) that unify with the `goal` type.
///
/// # Arguments
/// * `ctx` - Context for term search
///
/// Internally this function uses Breadth First Search to find path to `goal` type.
/// The general idea is following:
/// 1. Populate lookup (frontier for BFS) from values (local variables, statics, constants, etc)
/// as well as from well knows values (such as `true/false` and `()`)
/// 2. Iteratively expand the frontier (or contents of the lookup) by trying different type
/// transformation tactics. For example functions take as from set of types (arguments) to some
/// type (return type). Other transformations include methods on type, type constructors and
/// projections to struct fields (field access).
/// 3. If we run out of fuel (term search takes too long) we stop iterating.
/// 4. Return all the paths (type trees) that take us to the `goal` type.
///
/// Note that there are usually more ways we can get to the `goal` type but some are discarded to
/// reduce the memory consumption. It is also unlikely anyone is willing ti browse through
/// thousands of possible responses so we currently take first 10 from every tactic.
pub fn term_search<DB: HirDatabase>(ctx: &TermSearchCtx<'_, DB>) -> Vec<Expr> {
let module = ctx.scope.module();
let mut defs = FxHashSet::default();
defs.insert(ScopeDef::ModuleDef(ModuleDef::Module(module)));
ctx.scope.process_all_names(&mut |_, def| {
defs.insert(def);
});
let mut lookup = LookupTable::new(ctx.config.many_alternatives_threshold, ctx.goal.clone());
let fuel = std::cell::Cell::new(ctx.config.fuel);
let should_continue = &|| {
let remaining = fuel.get();
fuel.set(remaining.saturating_sub(1));
if remaining == 0 {
tracing::debug!("fuel exhausted");
}
remaining > 0
};
// Try trivial tactic first, also populates lookup table
let mut solutions: Vec<Expr> = tactics::trivial(ctx, &defs, &mut lookup).collect();
// Use well known types tactic before iterations as it does not depend on other tactics
solutions.extend(tactics::famous_types(ctx, &defs, &mut lookup));
solutions.extend(tactics::assoc_const(ctx, &defs, &mut lookup));
while should_continue() {
solutions.extend(tactics::data_constructor(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::free_function(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::impl_method(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::struct_projection(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::impl_static_method(ctx, &defs, &mut lookup, should_continue));
solutions.extend(tactics::make_tuple(ctx, &defs, &mut lookup, should_continue));
}
solutions.into_iter().filter(|it| !it.is_many()).unique().collect()
}