1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
//! Compute the binary representation of a type

use std::{borrow::Cow, fmt};

use base_db::salsa::Cycle;
use chalk_ir::{AdtId, FloatTy, IntTy, TyKind, UintTy};
use hir_def::{
    layout::{
        Abi, FieldsShape, Integer, LayoutCalculator, LayoutS, Primitive, ReprOptions, Scalar, Size,
        StructKind, TargetDataLayout, WrappingRange,
    },
    LocalFieldId, StructId,
};
use la_arena::{Idx, RawIdx};
use rustc_abi::AddressSpace;
use rustc_index::{IndexSlice, IndexVec};

use stdx::never;
use triomphe::Arc;

use crate::{
    consteval::try_const_usize,
    db::{HirDatabase, InternedClosure},
    infer::normalize,
    layout::adt::struct_variant_idx,
    utils::ClosureSubst,
    Interner, ProjectionTy, Substitution, TraitEnvironment, Ty,
};

pub use self::{
    adt::{layout_of_adt_query, layout_of_adt_recover},
    target::target_data_layout_query,
};

mod adt;
mod target;

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct RustcEnumVariantIdx(pub usize);

impl rustc_index::Idx for RustcEnumVariantIdx {
    fn new(idx: usize) -> Self {
        RustcEnumVariantIdx(idx)
    }

    fn index(self) -> usize {
        self.0
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct RustcFieldIdx(pub LocalFieldId);

impl RustcFieldIdx {
    pub fn new(idx: usize) -> Self {
        RustcFieldIdx(Idx::from_raw(RawIdx::from(idx as u32)))
    }
}

impl rustc_index::Idx for RustcFieldIdx {
    fn new(idx: usize) -> Self {
        RustcFieldIdx(Idx::from_raw(RawIdx::from(idx as u32)))
    }

    fn index(self) -> usize {
        u32::from(self.0.into_raw()) as usize
    }
}

pub type Layout = LayoutS<RustcFieldIdx, RustcEnumVariantIdx>;
pub type TagEncoding = hir_def::layout::TagEncoding<RustcEnumVariantIdx>;
pub type Variants = hir_def::layout::Variants<RustcFieldIdx, RustcEnumVariantIdx>;

#[derive(Debug, PartialEq, Eq, Clone)]
pub enum LayoutError {
    HasErrorConst,
    HasErrorType,
    HasPlaceholder,
    InvalidSimdType,
    NotImplemented,
    RecursiveTypeWithoutIndirection,
    SizeOverflow,
    TargetLayoutNotAvailable,
    Unknown,
    UserReprTooSmall,
}

impl std::error::Error for LayoutError {}
impl fmt::Display for LayoutError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            LayoutError::HasErrorConst => write!(f, "type contains an unevaluatable const"),
            LayoutError::HasErrorType => write!(f, "type contains an error"),
            LayoutError::HasPlaceholder => write!(f, "type contains placeholders"),
            LayoutError::InvalidSimdType => write!(f, "invalid simd type definition"),
            LayoutError::NotImplemented => write!(f, "not implemented"),
            LayoutError::RecursiveTypeWithoutIndirection => {
                write!(f, "recursive type without indirection")
            }
            LayoutError::SizeOverflow => write!(f, "size overflow"),
            LayoutError::TargetLayoutNotAvailable => write!(f, "target layout not available"),
            LayoutError::Unknown => write!(f, "unknown"),
            LayoutError::UserReprTooSmall => {
                write!(f, "the `#[repr]` hint is too small to hold the discriminants of the enum")
            }
        }
    }
}

struct LayoutCx<'a> {
    target: &'a TargetDataLayout,
}

impl<'a> LayoutCalculator for LayoutCx<'a> {
    type TargetDataLayoutRef = &'a TargetDataLayout;

    fn delayed_bug(&self, txt: impl Into<Cow<'static, str>>) {
        never!("{}", txt.into());
    }

    fn current_data_layout(&self) -> &'a TargetDataLayout {
        self.target
    }
}

// FIXME: move this to the `rustc_abi`.
fn layout_of_simd_ty(
    db: &dyn HirDatabase,
    id: StructId,
    subst: &Substitution,
    env: Arc<TraitEnvironment>,
    dl: &TargetDataLayout,
) -> Result<Arc<Layout>, LayoutError> {
    let fields = db.field_types(id.into());

    // Supported SIMD vectors are homogeneous ADTs with at least one field:
    //
    // * #[repr(simd)] struct S(T, T, T, T);
    // * #[repr(simd)] struct S { it: T, y: T, z: T, w: T }
    // * #[repr(simd)] struct S([T; 4])
    //
    // where T is a primitive scalar (integer/float/pointer).

    let f0_ty = match fields.iter().next() {
        Some(it) => it.1.clone().substitute(Interner, subst),
        None => return Err(LayoutError::InvalidSimdType),
    };

    // The element type and number of elements of the SIMD vector
    // are obtained from:
    //
    // * the element type and length of the single array field, if
    // the first field is of array type, or
    //
    // * the homogeneous field type and the number of fields.
    let (e_ty, e_len, is_array) = if let TyKind::Array(e_ty, _) = f0_ty.kind(Interner) {
        // Extract the number of elements from the layout of the array field:
        let FieldsShape::Array { count, .. } = db.layout_of_ty(f0_ty.clone(), env.clone())?.fields
        else {
            return Err(LayoutError::Unknown);
        };

        (e_ty.clone(), count, true)
    } else {
        // First ADT field is not an array:
        (f0_ty, fields.iter().count() as u64, false)
    };

    // Compute the ABI of the element type:
    let e_ly = db.layout_of_ty(e_ty, env)?;
    let Abi::Scalar(e_abi) = e_ly.abi else {
        return Err(LayoutError::Unknown);
    };

    // Compute the size and alignment of the vector:
    let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow)?;
    let align = dl.vector_align(size);
    let size = size.align_to(align.abi);

    // Compute the placement of the vector fields:
    let fields = if is_array {
        FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() }
    } else {
        FieldsShape::Array { stride: e_ly.size, count: e_len }
    };

    Ok(Arc::new(Layout {
        variants: Variants::Single { index: struct_variant_idx() },
        fields,
        abi: Abi::Vector { element: e_abi, count: e_len },
        largest_niche: e_ly.largest_niche,
        size,
        align,
        max_repr_align: None,
        unadjusted_abi_align: align.abi,
    }))
}

pub fn layout_of_ty_query(
    db: &dyn HirDatabase,
    ty: Ty,
    trait_env: Arc<TraitEnvironment>,
) -> Result<Arc<Layout>, LayoutError> {
    let krate = trait_env.krate;
    let Ok(target) = db.target_data_layout(krate) else {
        return Err(LayoutError::TargetLayoutNotAvailable);
    };
    let cx = LayoutCx { target: &target };
    let dl = cx.current_data_layout();
    let ty = normalize(db, trait_env.clone(), ty);
    let result = match ty.kind(Interner) {
        TyKind::Adt(AdtId(def), subst) => {
            if let hir_def::AdtId::StructId(s) = def {
                let data = db.struct_data(*s);
                let repr = data.repr.unwrap_or_default();
                if repr.simd() {
                    return layout_of_simd_ty(db, *s, subst, trait_env, &target);
                }
            };
            return db.layout_of_adt(*def, subst.clone(), trait_env);
        }
        TyKind::Scalar(s) => match s {
            chalk_ir::Scalar::Bool => Layout::scalar(
                dl,
                Scalar::Initialized {
                    value: Primitive::Int(Integer::I8, false),
                    valid_range: WrappingRange { start: 0, end: 1 },
                },
            ),
            chalk_ir::Scalar::Char => Layout::scalar(
                dl,
                Scalar::Initialized {
                    value: Primitive::Int(Integer::I32, false),
                    valid_range: WrappingRange { start: 0, end: 0x10FFFF },
                },
            ),
            chalk_ir::Scalar::Int(i) => scalar(
                dl,
                Primitive::Int(
                    match i {
                        IntTy::Isize => dl.ptr_sized_integer(),
                        IntTy::I8 => Integer::I8,
                        IntTy::I16 => Integer::I16,
                        IntTy::I32 => Integer::I32,
                        IntTy::I64 => Integer::I64,
                        IntTy::I128 => Integer::I128,
                    },
                    true,
                ),
            ),
            chalk_ir::Scalar::Uint(i) => scalar(
                dl,
                Primitive::Int(
                    match i {
                        UintTy::Usize => dl.ptr_sized_integer(),
                        UintTy::U8 => Integer::I8,
                        UintTy::U16 => Integer::I16,
                        UintTy::U32 => Integer::I32,
                        UintTy::U64 => Integer::I64,
                        UintTy::U128 => Integer::I128,
                    },
                    false,
                ),
            ),
            chalk_ir::Scalar::Float(f) => scalar(
                dl,
                match f {
                    FloatTy::F32 => Primitive::F32,
                    FloatTy::F64 => Primitive::F64,
                },
            ),
        },
        TyKind::Tuple(len, tys) => {
            let kind = if *len == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };

            let fields = tys
                .iter(Interner)
                .map(|k| db.layout_of_ty(k.assert_ty_ref(Interner).clone(), trait_env.clone()))
                .collect::<Result<Vec<_>, _>>()?;
            let fields = fields.iter().map(|it| &**it).collect::<Vec<_>>();
            let fields = fields.iter().collect::<IndexVec<_, _>>();
            cx.univariant(dl, &fields, &ReprOptions::default(), kind).ok_or(LayoutError::Unknown)?
        }
        TyKind::Array(element, count) => {
            let count = try_const_usize(db, count).ok_or(LayoutError::HasErrorConst)? as u64;
            let element = db.layout_of_ty(element.clone(), trait_env)?;
            let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow)?;

            let abi = if count != 0 && matches!(element.abi, Abi::Uninhabited) {
                Abi::Uninhabited
            } else {
                Abi::Aggregate { sized: true }
            };

            let largest_niche = if count != 0 { element.largest_niche } else { None };

            Layout {
                variants: Variants::Single { index: struct_variant_idx() },
                fields: FieldsShape::Array { stride: element.size, count },
                abi,
                largest_niche,
                align: element.align,
                size,
                max_repr_align: None,
                unadjusted_abi_align: element.align.abi,
            }
        }
        TyKind::Slice(element) => {
            let element = db.layout_of_ty(element.clone(), trait_env)?;
            Layout {
                variants: Variants::Single { index: struct_variant_idx() },
                fields: FieldsShape::Array { stride: element.size, count: 0 },
                abi: Abi::Aggregate { sized: false },
                largest_niche: None,
                align: element.align,
                size: Size::ZERO,
                max_repr_align: None,
                unadjusted_abi_align: element.align.abi,
            }
        }
        TyKind::Str => Layout {
            variants: Variants::Single { index: struct_variant_idx() },
            fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
            abi: Abi::Aggregate { sized: false },
            largest_niche: None,
            align: dl.i8_align,
            size: Size::ZERO,
            max_repr_align: None,
            unadjusted_abi_align: dl.i8_align.abi,
        },
        // Potentially-wide pointers.
        TyKind::Ref(_, _, pointee) | TyKind::Raw(_, pointee) => {
            let mut data_ptr = scalar_unit(dl, Primitive::Pointer(AddressSpace::DATA));
            if matches!(ty.kind(Interner), TyKind::Ref(..)) {
                data_ptr.valid_range_mut().start = 1;
            }

            // let pointee = tcx.normalize_erasing_regions(param_env, pointee);
            // if pointee.is_sized(tcx.at(DUMMY_SP), param_env) {
            //     return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
            // }

            let mut unsized_part = struct_tail_erasing_lifetimes(db, pointee.clone());
            if let TyKind::AssociatedType(id, subst) = unsized_part.kind(Interner) {
                unsized_part = TyKind::Alias(chalk_ir::AliasTy::Projection(ProjectionTy {
                    associated_ty_id: *id,
                    substitution: subst.clone(),
                }))
                .intern(Interner);
            }
            unsized_part = normalize(db, trait_env, unsized_part);
            let metadata = match unsized_part.kind(Interner) {
                TyKind::Slice(_) | TyKind::Str => {
                    scalar_unit(dl, Primitive::Int(dl.ptr_sized_integer(), false))
                }
                TyKind::Dyn(..) => {
                    let mut vtable = scalar_unit(dl, Primitive::Pointer(AddressSpace::DATA));
                    vtable.valid_range_mut().start = 1;
                    vtable
                }
                _ => {
                    // pointee is sized
                    return Ok(Arc::new(Layout::scalar(dl, data_ptr)));
                }
            };

            // Effectively a (ptr, meta) tuple.
            cx.scalar_pair(data_ptr, metadata)
        }
        TyKind::FnDef(_, _) => layout_of_unit(&cx, dl)?,
        TyKind::Never => cx.layout_of_never_type(),
        TyKind::Dyn(_) | TyKind::Foreign(_) => {
            let mut unit = layout_of_unit(&cx, dl)?;
            match &mut unit.abi {
                Abi::Aggregate { sized } => *sized = false,
                _ => return Err(LayoutError::Unknown),
            }
            unit
        }
        TyKind::Function(_) => {
            let mut ptr = scalar_unit(dl, Primitive::Pointer(dl.instruction_address_space));
            ptr.valid_range_mut().start = 1;
            Layout::scalar(dl, ptr)
        }
        TyKind::OpaqueType(opaque_ty_id, _) => {
            let impl_trait_id = db.lookup_intern_impl_trait_id((*opaque_ty_id).into());
            match impl_trait_id {
                crate::ImplTraitId::ReturnTypeImplTrait(func, idx) => {
                    let infer = db.infer(func.into());
                    return db.layout_of_ty(infer.type_of_rpit[idx].clone(), trait_env);
                }
                crate::ImplTraitId::AssociatedTypeImplTrait(..) => {
                    return Err(LayoutError::NotImplemented);
                }
                crate::ImplTraitId::AsyncBlockTypeImplTrait(_, _) => {
                    return Err(LayoutError::NotImplemented)
                }
            }
        }
        TyKind::Closure(c, subst) => {
            let InternedClosure(def, _) = db.lookup_intern_closure((*c).into());
            let infer = db.infer(def);
            let (captures, _) = infer.closure_info(c);
            let fields = captures
                .iter()
                .map(|it| {
                    db.layout_of_ty(
                        it.ty.clone().substitute(Interner, ClosureSubst(subst).parent_subst()),
                        trait_env.clone(),
                    )
                })
                .collect::<Result<Vec<_>, _>>()?;
            let fields = fields.iter().map(|it| &**it).collect::<Vec<_>>();
            let fields = fields.iter().collect::<IndexVec<_, _>>();
            cx.univariant(dl, &fields, &ReprOptions::default(), StructKind::AlwaysSized)
                .ok_or(LayoutError::Unknown)?
        }
        TyKind::Coroutine(_, _) | TyKind::CoroutineWitness(_, _) => {
            return Err(LayoutError::NotImplemented)
        }
        TyKind::Error => return Err(LayoutError::HasErrorType),
        TyKind::AssociatedType(id, subst) => {
            // Try again with `TyKind::Alias` to normalize the associated type.
            let ty = TyKind::Alias(chalk_ir::AliasTy::Projection(ProjectionTy {
                associated_ty_id: *id,
                substitution: subst.clone(),
            }))
            .intern(Interner);
            return db.layout_of_ty(ty, trait_env);
        }
        TyKind::Alias(_)
        | TyKind::Placeholder(_)
        | TyKind::BoundVar(_)
        | TyKind::InferenceVar(_, _) => return Err(LayoutError::HasPlaceholder),
    };
    Ok(Arc::new(result))
}

pub fn layout_of_ty_recover(
    _: &dyn HirDatabase,
    _: &Cycle,
    _: &Ty,
    _: &Arc<TraitEnvironment>,
) -> Result<Arc<Layout>, LayoutError> {
    Err(LayoutError::RecursiveTypeWithoutIndirection)
}

fn layout_of_unit(cx: &LayoutCx<'_>, dl: &TargetDataLayout) -> Result<Layout, LayoutError> {
    cx.univariant::<RustcFieldIdx, RustcEnumVariantIdx, &&Layout>(
        dl,
        IndexSlice::empty(),
        &ReprOptions::default(),
        StructKind::AlwaysSized,
    )
    .ok_or(LayoutError::Unknown)
}

fn struct_tail_erasing_lifetimes(db: &dyn HirDatabase, pointee: Ty) -> Ty {
    match pointee.kind(Interner) {
        TyKind::Adt(AdtId(hir_def::AdtId::StructId(i)), subst) => {
            let data = db.struct_data(*i);
            let mut it = data.variant_data.fields().iter().rev();
            match it.next() {
                Some((f, _)) => {
                    let last_field_ty = field_ty(db, (*i).into(), f, subst);
                    struct_tail_erasing_lifetimes(db, last_field_ty)
                }
                None => pointee,
            }
        }
        _ => pointee,
    }
}

fn field_ty(
    db: &dyn HirDatabase,
    def: hir_def::VariantId,
    fd: LocalFieldId,
    subst: &Substitution,
) -> Ty {
    db.field_types(def)[fd].clone().substitute(Interner, subst)
}

fn scalar_unit(dl: &TargetDataLayout, value: Primitive) -> Scalar {
    Scalar::Initialized { value, valid_range: WrappingRange::full(value.size(dl)) }
}

fn scalar(dl: &TargetDataLayout, value: Primitive) -> Layout {
    Layout::scalar(dl, scalar_unit(dl, value))
}

#[cfg(test)]
mod tests;