ide_ssr/
search.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//! Searching for matches.

use crate::{
    matching,
    resolving::{ResolvedPath, ResolvedPattern, ResolvedRule},
    Match, MatchFinder,
};
use hir::FileRange;
use ide_db::{
    defs::Definition,
    search::{SearchScope, UsageSearchResult},
    EditionedFileId, FileId, FxHashSet,
};
use syntax::{ast, AstNode, SyntaxKind, SyntaxNode};

/// A cache for the results of find_usages. This is for when we have multiple patterns that have the
/// same path. e.g. if the pattern was `foo::Bar` that can parse as a path, an expression, a type
/// and as a pattern. In each, the usages of `foo::Bar` are the same and we'd like to avoid finding
/// them more than once.
#[derive(Default)]
pub(crate) struct UsageCache {
    usages: Vec<(Definition, UsageSearchResult)>,
}

impl MatchFinder<'_> {
    /// Adds all matches for `rule` to `matches_out`. Matches may overlap in ways that make
    /// replacement impossible, so further processing is required in order to properly nest matches
    /// and remove overlapping matches. This is done in the `nesting` module.
    pub(crate) fn find_matches_for_rule(
        &self,
        rule: &ResolvedRule,
        usage_cache: &mut UsageCache,
        matches_out: &mut Vec<Match>,
    ) {
        if rule.pattern.contains_self {
            // If the pattern contains `self` we restrict the scope of the search to just the
            // current method. No other method can reference the same `self`. This makes the
            // behavior of `self` consistent with other variables.
            if let Some(current_function) = self.resolution_scope.current_function() {
                self.slow_scan_node(&current_function, rule, &None, matches_out);
            }
            return;
        }
        if pick_path_for_usages(&rule.pattern).is_none() {
            self.slow_scan(rule, matches_out);
            return;
        }
        self.find_matches_for_pattern_tree(rule, &rule.pattern, usage_cache, matches_out);
    }

    fn find_matches_for_pattern_tree(
        &self,
        rule: &ResolvedRule,
        pattern: &ResolvedPattern,
        usage_cache: &mut UsageCache,
        matches_out: &mut Vec<Match>,
    ) {
        if let Some(resolved_path) = pick_path_for_usages(pattern) {
            let definition: Definition = resolved_path.resolution.into();
            for file_range in self.find_usages(usage_cache, definition).file_ranges() {
                for node_to_match in self.find_nodes_to_match(resolved_path, file_range) {
                    if !is_search_permitted_ancestors(&node_to_match) {
                        cov_mark::hit!(use_declaration_with_braces);
                        continue;
                    }
                    self.try_add_match(rule, &node_to_match, &None, matches_out);
                }
            }
        }
    }

    fn find_nodes_to_match(
        &self,
        resolved_path: &ResolvedPath,
        file_range: FileRange,
    ) -> Vec<SyntaxNode> {
        let file = self.sema.parse(file_range.file_id);
        let depth = resolved_path.depth as usize;
        let offset = file_range.range.start();

        let mut paths = self
            .sema
            .find_nodes_at_offset_with_descend::<ast::Path>(file.syntax(), offset)
            .peekable();

        if paths.peek().is_some() {
            paths
                .filter_map(|path| {
                    self.sema.ancestors_with_macros(path.syntax().clone()).nth(depth)
                })
                .collect::<Vec<_>>()
        } else {
            self.sema
                .find_nodes_at_offset_with_descend::<ast::MethodCallExpr>(file.syntax(), offset)
                .filter_map(|path| {
                    // If the pattern contained a path and we found a reference to that path that wasn't
                    // itself a path, but was a method call, then we need to adjust how far up to try
                    // matching by how deep the path was within a CallExpr. The structure would have been
                    // CallExpr, PathExpr, Path - i.e. a depth offset of 2. We don't need to check if the
                    // path was part of a CallExpr because if it wasn't then all that will happen is we'll
                    // fail to match, which is the desired behavior.
                    const PATH_DEPTH_IN_CALL_EXPR: usize = 2;
                    if depth < PATH_DEPTH_IN_CALL_EXPR {
                        return None;
                    }
                    self.sema
                        .ancestors_with_macros(path.syntax().clone())
                        .nth(depth - PATH_DEPTH_IN_CALL_EXPR)
                })
                .collect::<Vec<_>>()
        }
    }

    fn find_usages<'a>(
        &self,
        usage_cache: &'a mut UsageCache,
        definition: Definition,
    ) -> &'a UsageSearchResult {
        // Logically if a lookup succeeds we should just return it. Unfortunately returning it would
        // extend the lifetime of the borrow, then we wouldn't be able to do the insertion on a
        // cache miss. This is a limitation of NLL and is fixed with Polonius. For now we do two
        // lookups in the case of a cache hit.
        if usage_cache.find(&definition).is_none() {
            let usages = definition.usages(&self.sema).in_scope(&self.search_scope()).all();
            usage_cache.usages.push((definition, usages));
            return &usage_cache.usages.last().unwrap().1;
        }
        usage_cache.find(&definition).unwrap()
    }

    /// Returns the scope within which we want to search. We don't want un unrestricted search
    /// scope, since we don't want to find references in external dependencies.
    fn search_scope(&self) -> SearchScope {
        // FIXME: We should ideally have a test that checks that we edit local roots and not library
        // roots. This probably would require some changes to fixtures, since currently everything
        // seems to get put into a single source root.
        let mut files = Vec::new();
        self.search_files_do(|file_id| {
            files.push(
                self.sema
                    .attach_first_edition(file_id)
                    .unwrap_or_else(|| EditionedFileId::current_edition(file_id)),
            );
        });
        SearchScope::files(&files)
    }

    fn slow_scan(&self, rule: &ResolvedRule, matches_out: &mut Vec<Match>) {
        self.search_files_do(|file_id| {
            let file = self.sema.parse_guess_edition(file_id);
            let code = file.syntax();
            self.slow_scan_node(code, rule, &None, matches_out);
        })
    }

    fn search_files_do(&self, mut callback: impl FnMut(FileId)) {
        if self.restrict_ranges.is_empty() {
            // Unrestricted search.
            use ide_db::base_db::SourceRootDatabase;
            use ide_db::symbol_index::SymbolsDatabase;
            for &root in self.sema.db.local_roots().iter() {
                let sr = self.sema.db.source_root(root);
                for file_id in sr.iter() {
                    callback(file_id);
                }
            }
        } else {
            // Search is restricted, deduplicate file IDs (generally only one).
            let mut files = FxHashSet::default();
            for range in &self.restrict_ranges {
                if files.insert(range.file_id) {
                    callback(range.file_id);
                }
            }
        }
    }

    fn slow_scan_node(
        &self,
        code: &SyntaxNode,
        rule: &ResolvedRule,
        restrict_range: &Option<FileRange>,
        matches_out: &mut Vec<Match>,
    ) {
        if !is_search_permitted(code) {
            return;
        }
        self.try_add_match(rule, code, restrict_range, matches_out);
        // If we've got a macro call, we already tried matching it pre-expansion, which is the only
        // way to match the whole macro, now try expanding it and matching the expansion.
        if let Some(macro_call) = ast::MacroCall::cast(code.clone()) {
            if let Some(expanded) = self.sema.expand_macro_call(&macro_call) {
                if let Some(tt) = macro_call.token_tree() {
                    // When matching within a macro expansion, we only want to allow matches of
                    // nodes that originated entirely from within the token tree of the macro call.
                    // i.e. we don't want to match something that came from the macro itself.
                    if let Some(range) = self.sema.original_range_opt(tt.syntax()) {
                        self.slow_scan_node(&expanded, rule, &Some(range), matches_out);
                    }
                }
            }
        }
        for child in code.children() {
            self.slow_scan_node(&child, rule, restrict_range, matches_out);
        }
    }

    fn try_add_match(
        &self,
        rule: &ResolvedRule,
        code: &SyntaxNode,
        restrict_range: &Option<FileRange>,
        matches_out: &mut Vec<Match>,
    ) {
        if !self.within_range_restrictions(code) {
            cov_mark::hit!(replace_nonpath_within_selection);
            return;
        }
        if let Ok(m) = matching::get_match(false, rule, code, restrict_range, &self.sema) {
            matches_out.push(m);
        }
    }

    /// Returns whether `code` is within one of our range restrictions if we have any. No range
    /// restrictions is considered unrestricted and always returns true.
    fn within_range_restrictions(&self, code: &SyntaxNode) -> bool {
        if self.restrict_ranges.is_empty() {
            // There is no range restriction.
            return true;
        }
        let Some(node_range) = self.sema.original_range_opt(code) else { return false };
        for range in &self.restrict_ranges {
            if range.file_id == node_range.file_id && range.range.contains_range(node_range.range) {
                return true;
            }
        }
        false
    }
}

/// Returns whether we support matching within `node` and all of its ancestors.
fn is_search_permitted_ancestors(node: &SyntaxNode) -> bool {
    if let Some(parent) = node.parent() {
        if !is_search_permitted_ancestors(&parent) {
            return false;
        }
    }
    is_search_permitted(node)
}

/// Returns whether we support matching within this kind of node.
fn is_search_permitted(node: &SyntaxNode) -> bool {
    // FIXME: Properly handle use declarations. At the moment, if our search pattern is `foo::bar`
    // and the code is `use foo::{baz, bar}`, we'll match `bar`, since it resolves to `foo::bar`.
    // However we'll then replace just the part we matched `bar`. We probably need to instead remove
    // `bar` and insert a new use declaration.
    node.kind() != SyntaxKind::USE
}

impl UsageCache {
    fn find(&mut self, definition: &Definition) -> Option<&UsageSearchResult> {
        // We expect a very small number of cache entries (generally 1), so a linear scan should be
        // fast enough and avoids the need to implement Hash for Definition.
        for (d, refs) in &self.usages {
            if d == definition {
                return Some(refs);
            }
        }
        None
    }
}

/// Returns a path that's suitable for path resolution. We exclude builtin types, since they aren't
/// something that we can find references to. We then somewhat arbitrarily pick the path that is the
/// longest as this is hopefully more likely to be less common, making it faster to find.
fn pick_path_for_usages(pattern: &ResolvedPattern) -> Option<&ResolvedPath> {
    // FIXME: Take the scope of the resolved path into account. e.g. if there are any paths that are
    // private to the current module, then we definitely would want to pick them over say a path
    // from std. Possibly we should go further than this and intersect the search scopes for all
    // resolved paths then search only in that scope.
    pattern
        .resolved_paths
        .iter()
        .filter(|(_, p)| {
            !matches!(p.resolution, hir::PathResolution::Def(hir::ModuleDef::BuiltinType(_)))
        })
        .map(|(node, resolved)| (node.text().len(), resolved))
        .max_by(|(a, _), (b, _)| a.cmp(b))
        .map(|(_, resolved)| resolved)
}