parser/grammar/generic_args.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
use super::*;
// test_err generic_arg_list_recover_expr
// const _: () = T::<0, ,T>;
// const _: () = T::<0, ,T>();
pub(super) fn opt_generic_arg_list_expr(p: &mut Parser<'_>) {
let m;
if p.at(T![::]) && p.nth(2) == T![<] {
m = p.start();
p.bump(T![::]);
} else {
return;
}
delimited(
p,
T![<],
T![>],
T![,],
|| "expected generic argument".into(),
GENERIC_ARG_FIRST,
generic_arg,
);
m.complete(p, GENERIC_ARG_LIST);
}
pub(crate) const GENERIC_ARG_FIRST: TokenSet = TokenSet::new(&[
LIFETIME_IDENT,
IDENT,
T!['{'],
T![true],
T![false],
T![-],
INT_NUMBER,
FLOAT_NUMBER,
CHAR,
BYTE,
STRING,
BYTE_STRING,
C_STRING,
])
.union(types::TYPE_FIRST);
// Despite its name, it can also be used for generic param list.
const GENERIC_ARG_RECOVERY_SET: TokenSet = TokenSet::new(&[T![>], T![,]]);
// test generic_arg
// type T = S<i32, dyn T, fn()>;
pub(crate) fn generic_arg(p: &mut Parser<'_>) -> bool {
match p.current() {
LIFETIME_IDENT if !p.nth_at(1, T![+]) => lifetime_arg(p),
T!['{'] | T![true] | T![false] | T![-] => const_arg(p),
k if k.is_literal() => const_arg(p),
// test generic_arg_bounds
// type Plain = Foo<Item, Item::Item, Item: Bound, Item = Item>;
// type GenericArgs = Foo<Item<T>, Item::<T>, Item<T>: Bound, Item::<T>: Bound, Item<T> = Item, Item::<T> = Item>;
// type ParenthesizedArgs = Foo<Item(T), Item::(T), Item(T): Bound, Item::(T): Bound, Item(T) = Item, Item::(T) = Item>;
// type RTN = Foo<Item(..), Item(..), Item(..): Bound, Item(..): Bound, Item(..) = Item, Item(..) = Item>;
// test edition_2015_dyn_prefix_inside_generic_arg 2015
// type A = Foo<dyn T>;
T![ident] if !p.edition().at_least_2018() && types::is_dyn_weak(p) => type_arg(p),
// test macro_inside_generic_arg
// type A = Foo<syn::Token![_]>;
k if PATH_NAME_REF_KINDS.contains(k) => {
let m = p.start();
name_ref_mod_path(p);
paths::opt_path_type_args(p);
match p.current() {
T![=] => {
p.bump_any();
if types::TYPE_FIRST.contains(p.current()) {
// test assoc_type_eq
// type T = StreamingIterator<Item<'a> = &'a T>;
types::type_(p);
} else if p.at_ts(GENERIC_ARG_RECOVERY_SET) {
// Although `const_arg()` recovers as expected, we want to
// handle those here to give the following message because
// we don't know whether this associated item is a type or
// const at this point.
// test_err recover_from_missing_assoc_item_binding
// fn f() -> impl Iterator<Item = , Item = > {}
p.error("missing associated item binding");
} else {
// test assoc_const_eq
// fn foo<F: Foo<N=3>>() {}
// const TEST: usize = 3;
// fn bar<F: Foo<N={TEST}>>() {}
const_arg(p);
}
m.complete(p, ASSOC_TYPE_ARG);
}
// test assoc_type_bound
// type T = StreamingIterator<Item<'a>: Clone>;
// type T = StreamingIterator<Item(T): Clone>;
T![:] if !p.at(T![::]) => {
generic_params::bounds(p);
m.complete(p, ASSOC_TYPE_ARG);
}
// Turned out to be just a normal path type (mirror `path_or_macro_type`)
_ => {
let m = m.complete(p, PATH_SEGMENT).precede(p).complete(p, PATH);
let m = paths::type_path_for_qualifier(p, m);
let m = if p.at(T![!]) && !p.at(T![!=]) {
let m = m.precede(p);
items::macro_call_after_excl(p);
m.complete(p, MACRO_CALL).precede(p).complete(p, MACRO_TYPE)
} else {
m.precede(p).complete(p, PATH_TYPE)
};
types::opt_type_bounds_as_dyn_trait_type(p, m).precede(p).complete(p, TYPE_ARG);
}
}
}
_ if p.at_ts(types::TYPE_FIRST) => type_arg(p),
_ => return false,
}
true
}
// test lifetime_arg
// type T = S<'static>;
fn lifetime_arg(p: &mut Parser<'_>) {
let m = p.start();
lifetime(p);
m.complete(p, LIFETIME_ARG);
}
pub(super) fn const_arg_expr(p: &mut Parser<'_>) {
// The tests in here are really for `const_arg`, which wraps the content
// CONST_ARG.
match p.current() {
// test const_arg_block
// type T = S<{90 + 2}>;
T!['{'] => {
expressions::block_expr(p);
}
// test const_arg_literal
// type T = S<"hello", 0xdeadbeef>;
k if k.is_literal() => {
expressions::literal(p);
}
// test const_arg_bool_literal
// type T = S<true>;
T![true] | T![false] => {
expressions::literal(p);
}
// test const_arg_negative_number
// type T = S<-92>;
T![-] => {
let lm = p.start();
p.bump(T![-]);
expressions::literal(p);
lm.complete(p, PREFIX_EXPR);
}
_ if paths::is_path_start(p) => {
// This shouldn't be hit by `const_arg`
let lm = p.start();
paths::expr_path(p);
lm.complete(p, PATH_EXPR);
}
_ => {
// test_err recover_from_missing_const_default
// struct A<const N: i32 = , const M: i32 =>;
p.err_recover("expected a generic const argument", GENERIC_ARG_RECOVERY_SET);
}
}
}
// test const_arg
// type T = S<92>;
pub(super) fn const_arg(p: &mut Parser<'_>) {
let m = p.start();
const_arg_expr(p);
m.complete(p, CONST_ARG);
}
pub(crate) fn type_arg(p: &mut Parser<'_>) {
let m = p.start();
types::type_(p);
m.complete(p, TYPE_ARG);
}