1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).

use std::{hash::Hash, iter};

use base_db::CrateId;
use chalk_ir::{
    fold::{FallibleTypeFolder, Shift},
    DebruijnIndex,
};
use hir_def::{
    db::DefDatabase,
    generics::{WherePredicate, WherePredicateTypeTarget},
    lang_item::LangItem,
    resolver::{HasResolver, TypeNs},
    type_ref::{TraitBoundModifier, TypeRef},
    EnumId, EnumVariantId, FunctionId, Lookup, OpaqueInternableThing, TraitId, TypeAliasId,
    TypeOrConstParamId,
};
use hir_expand::name::Name;
use intern::sym;
use rustc_abi::TargetDataLayout;
use rustc_hash::FxHashSet;
use smallvec::{smallvec, SmallVec};
use stdx::never;

use crate::{
    consteval::unknown_const,
    db::HirDatabase,
    layout::{Layout, TagEncoding},
    mir::pad16,
    ChalkTraitId, Const, ConstScalar, GenericArg, Interner, Substitution, TraitRef, TraitRefExt,
    Ty, WhereClause,
};

pub(crate) fn fn_traits(
    db: &dyn DefDatabase,
    krate: CrateId,
) -> impl Iterator<Item = TraitId> + '_ {
    [LangItem::Fn, LangItem::FnMut, LangItem::FnOnce]
        .into_iter()
        .filter_map(move |lang| db.lang_item(krate, lang))
        .flat_map(|it| it.as_trait())
}

/// Returns an iterator over the direct super traits (including the trait itself).
pub fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> {
    let mut result = smallvec![trait_];
    direct_super_traits_cb(db, trait_, |tt| {
        if !result.contains(&tt) {
            result.push(tt);
        }
    });
    result
}

/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> {
    // we need to take care a bit here to avoid infinite loops in case of cycles
    // (i.e. if we have `trait A: B; trait B: A;`)

    let mut result = smallvec![trait_];
    let mut i = 0;
    while let Some(&t) = result.get(i) {
        // yeah this is quadratic, but trait hierarchies should be flat
        // enough that this doesn't matter
        direct_super_traits_cb(db, t, |tt| {
            if !result.contains(&tt) {
                result.push(tt);
            }
        });
        i += 1;
    }
    result
}

/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs<T>(
    db: &dyn HirDatabase,
    trait_ref: TraitRef,
    cb: impl FnMut(TraitRef) -> Option<T>,
) -> Option<T> {
    let seen = iter::once(trait_ref.trait_id).collect();
    SuperTraits { db, seen, stack: vec![trait_ref] }.find_map(cb)
}

struct SuperTraits<'a> {
    db: &'a dyn HirDatabase,
    stack: Vec<TraitRef>,
    seen: FxHashSet<ChalkTraitId>,
}

impl SuperTraits<'_> {
    fn elaborate(&mut self, trait_ref: &TraitRef) {
        direct_super_trait_refs(self.db, trait_ref, |trait_ref| {
            if !self.seen.contains(&trait_ref.trait_id) {
                self.stack.push(trait_ref);
            }
        });
    }
}

impl Iterator for SuperTraits<'_> {
    type Item = TraitRef;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(next) = self.stack.pop() {
            self.elaborate(&next);
            Some(next)
        } else {
            None
        }
    }
}

pub(super) fn elaborate_clause_supertraits(
    db: &dyn HirDatabase,
    clauses: impl Iterator<Item = WhereClause>,
) -> ClauseElaborator<'_> {
    let mut elaborator = ClauseElaborator { db, stack: Vec::new(), seen: FxHashSet::default() };
    elaborator.extend_deduped(clauses);

    elaborator
}

pub(super) struct ClauseElaborator<'a> {
    db: &'a dyn HirDatabase,
    stack: Vec<WhereClause>,
    seen: FxHashSet<WhereClause>,
}

impl ClauseElaborator<'_> {
    fn extend_deduped(&mut self, clauses: impl IntoIterator<Item = WhereClause>) {
        self.stack.extend(clauses.into_iter().filter(|c| self.seen.insert(c.clone())))
    }

    fn elaborate_supertrait(&mut self, clause: &WhereClause) {
        if let WhereClause::Implemented(trait_ref) = clause {
            direct_super_trait_refs(self.db, trait_ref, |t| {
                let clause = WhereClause::Implemented(t);
                if self.seen.insert(clause.clone()) {
                    self.stack.push(clause);
                }
            });
        }
    }
}

impl Iterator for ClauseElaborator<'_> {
    type Item = WhereClause;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(next) = self.stack.pop() {
            self.elaborate_supertrait(&next);
            Some(next)
        } else {
            None
        }
    }
}

fn direct_super_traits_cb(db: &dyn DefDatabase, trait_: TraitId, cb: impl FnMut(TraitId)) {
    let resolver = trait_.resolver(db);
    let generic_params = db.generic_params(trait_.into());
    let trait_self = generic_params.trait_self_param();
    generic_params
        .where_predicates()
        .filter_map(|pred| match pred {
            WherePredicate::ForLifetime { target, bound, .. }
            | WherePredicate::TypeBound { target, bound } => {
                let is_trait = match target {
                    WherePredicateTypeTarget::TypeRef(type_ref) => {
                        match &generic_params.types_map[*type_ref] {
                            TypeRef::Path(p) => p.is_self_type(),
                            _ => false,
                        }
                    }
                    WherePredicateTypeTarget::TypeOrConstParam(local_id) => {
                        Some(*local_id) == trait_self
                    }
                };
                match is_trait {
                    true => bound.as_path(),
                    false => None,
                }
            }
            WherePredicate::Lifetime { .. } => None,
        })
        .filter(|(_, bound_modifier)| matches!(bound_modifier, TraitBoundModifier::None))
        .filter_map(|(path, _)| match resolver.resolve_path_in_type_ns_fully(db, path) {
            Some(TypeNs::TraitId(t)) => Some(t),
            _ => None,
        })
        .for_each(cb);
}

fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef, cb: impl FnMut(TraitRef)) {
    let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
    let trait_self = match generic_params.trait_self_param() {
        Some(p) => TypeOrConstParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
        None => return,
    };
    db.generic_predicates_for_param(trait_self.parent, trait_self, None)
        .iter()
        .filter_map(|pred| {
            pred.as_ref().filter_map(|pred| match pred.skip_binders() {
                // FIXME: how to correctly handle higher-ranked bounds here?
                WhereClause::Implemented(tr) => Some(
                    tr.clone()
                        .shifted_out_to(Interner, DebruijnIndex::ONE)
                        .expect("FIXME unexpected higher-ranked trait bound"),
                ),
                _ => None,
            })
        })
        .map(|pred| pred.substitute(Interner, &trait_ref.substitution))
        .for_each(cb);
}

pub(super) fn associated_type_by_name_including_super_traits(
    db: &dyn HirDatabase,
    trait_ref: TraitRef,
    name: &Name,
) -> Option<(TraitRef, TypeAliasId)> {
    all_super_trait_refs(db, trait_ref, |t| {
        let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
        Some((t, assoc_type))
    })
}

/// It is a bit different from the rustc equivalent. Currently it stores:
/// - 0: the function signature, encoded as a function pointer type
/// - 1..n: generics of the parent
///
/// and it doesn't store the closure types and fields.
///
/// Codes should not assume this ordering, and should always use methods available
/// on this struct for retrieving, and `TyBuilder::substs_for_closure` for creating.
pub(crate) struct ClosureSubst<'a>(pub(crate) &'a Substitution);

impl<'a> ClosureSubst<'a> {
    pub(crate) fn parent_subst(&self) -> &'a [GenericArg] {
        match self.0.as_slice(Interner) {
            [_, x @ ..] => x,
            _ => {
                never!("Closure missing parameter");
                &[]
            }
        }
    }

    pub(crate) fn sig_ty(&self) -> &'a Ty {
        match self.0.as_slice(Interner) {
            [x, ..] => x.assert_ty_ref(Interner),
            _ => {
                unreachable!("Closure missing sig_ty parameter");
            }
        }
    }
}

pub fn is_fn_unsafe_to_call(db: &dyn HirDatabase, func: FunctionId) -> bool {
    let data = db.function_data(func);
    if data.is_unsafe() {
        return true;
    }

    let is_intrinsic = db.attrs(func.into()).by_key(&sym::rustc_intrinsic).exists()
        || data.abi.as_ref() == Some(&sym::rust_dash_intrinsic);

    let loc = func.lookup(db.upcast());
    match loc.container {
        hir_def::ItemContainerId::ExternBlockId(block) => {
            if is_intrinsic || {
                let id = block.lookup(db.upcast()).id;
                id.item_tree(db.upcast())[id.value].abi.as_ref() == Some(&sym::rust_dash_intrinsic)
            } {
                // Intrinsics are unsafe unless they have the rustc_safe_intrinsic attribute
                !db.attrs(func.into()).by_key(&sym::rustc_safe_intrinsic).exists()
            } else {
                // Function in an `extern` block are always unsafe to call, except when
                // it is marked as `safe`.
                !data.is_safe()
            }
        }
        _ if is_intrinsic => !db.attrs(func.into()).by_key(&sym::rustc_safe_intrinsic).exists(),
        _ => false,
    }
}

pub(crate) struct UnevaluatedConstEvaluatorFolder<'a> {
    pub(crate) db: &'a dyn HirDatabase,
}

impl FallibleTypeFolder<Interner> for UnevaluatedConstEvaluatorFolder<'_> {
    type Error = ();

    fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder<Interner, Error = ()> {
        self
    }

    fn interner(&self) -> Interner {
        Interner
    }

    fn try_fold_const(
        &mut self,
        constant: Const,
        _outer_binder: DebruijnIndex,
    ) -> Result<Const, Self::Error> {
        if let chalk_ir::ConstValue::Concrete(c) = &constant.data(Interner).value {
            if let ConstScalar::UnevaluatedConst(id, subst) = &c.interned {
                if let Ok(eval) = self.db.const_eval(*id, subst.clone(), None) {
                    return Ok(eval);
                } else {
                    return Ok(unknown_const(constant.data(Interner).ty.clone()));
                }
            }
        }
        Ok(constant)
    }
}

pub(crate) fn detect_variant_from_bytes<'a>(
    layout: &'a Layout,
    db: &dyn HirDatabase,
    target_data_layout: &TargetDataLayout,
    b: &[u8],
    e: EnumId,
) -> Option<(EnumVariantId, &'a Layout)> {
    let (var_id, var_layout) = match &layout.variants {
        hir_def::layout::Variants::Single { index } => {
            (db.enum_data(e).variants[index.0].0, layout)
        }
        hir_def::layout::Variants::Multiple { tag, tag_encoding, variants, .. } => {
            let size = tag.size(target_data_layout).bytes_usize();
            let offset = layout.fields.offset(0).bytes_usize(); // The only field on enum variants is the tag field
            let tag = i128::from_le_bytes(pad16(&b[offset..offset + size], false));
            match tag_encoding {
                TagEncoding::Direct => {
                    let (var_idx, layout) =
                        variants.iter_enumerated().find_map(|(var_idx, v)| {
                            let def = db.enum_data(e).variants[var_idx.0].0;
                            (db.const_eval_discriminant(def) == Ok(tag)).then_some((def, v))
                        })?;
                    (var_idx, layout)
                }
                TagEncoding::Niche { untagged_variant, niche_start, .. } => {
                    let candidate_tag = tag.wrapping_sub(*niche_start as i128) as usize;
                    let variant = variants
                        .iter_enumerated()
                        .map(|(x, _)| x)
                        .filter(|x| x != untagged_variant)
                        .nth(candidate_tag)
                        .unwrap_or(*untagged_variant);
                    (db.enum_data(e).variants[variant.0].0, &variants[variant])
                }
            }
        }
    };
    Some((var_id, var_layout))
}

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub(crate) struct InTypeConstIdMetadata(pub(crate) Ty);

impl OpaqueInternableThing for InTypeConstIdMetadata {
    fn dyn_hash(&self, mut state: &mut dyn std::hash::Hasher) {
        self.hash(&mut state);
    }

    fn dyn_eq(&self, other: &dyn OpaqueInternableThing) -> bool {
        other.as_any().downcast_ref::<Self>().map_or(false, |x| self == x)
    }

    fn dyn_clone(&self) -> Box<dyn OpaqueInternableThing> {
        Box::new(self.clone())
    }

    fn as_any(&self) -> &dyn std::any::Any {
        self
    }

    fn box_any(&self) -> Box<dyn std::any::Any> {
        Box::new(self.clone())
    }
}