hir_ty/infer/
coerce.rs

1//! # Type Coercion
2//!
3//! Under certain circumstances we will coerce from one type to another,
4//! for example by auto-borrowing. This occurs in situations where the
5//! compiler has a firm 'expected type' that was supplied from the user,
6//! and where the actual type is similar to that expected type in purpose
7//! but not in representation (so actual subtyping is inappropriate).
8//!
9//! ## Reborrowing
10//!
11//! Note that if we are expecting a reference, we will *reborrow*
12//! even if the argument provided was already a reference. This is
13//! useful for freezing mut things (that is, when the expected type is &T
14//! but you have &mut T) and also for avoiding the linearity
15//! of mut things (when the expected is &mut T and you have &mut T). See
16//! the various `tests/ui/coerce/*.rs` tests for
17//! examples of where this is useful.
18//!
19//! ## Subtle note
20//!
21//! When inferring the generic arguments of functions, the argument
22//! order is relevant, which can lead to the following edge case:
23//!
24//! ```ignore (illustrative)
25//! fn foo<T>(a: T, b: T) {
26//!     // ...
27//! }
28//!
29//! foo(&7i32, &mut 7i32);
30//! // This compiles, as we first infer `T` to be `&i32`,
31//! // and then coerce `&mut 7i32` to `&7i32`.
32//!
33//! foo(&mut 7i32, &7i32);
34//! // This does not compile, as we first infer `T` to be `&mut i32`
35//! // and are then unable to coerce `&7i32` to `&mut i32`.
36//! ```
37
38use hir_def::{
39    CallableDefId,
40    attrs::AttrFlags,
41    hir::{ExprId, ExprOrPatId},
42    signatures::FunctionSignature,
43};
44use rustc_ast_ir::Mutability;
45use rustc_type_ir::{
46    BoundVar, DebruijnIndex, TyVid, TypeAndMut, TypeFoldable, TypeFolder, TypeSuperFoldable,
47    TypeVisitableExt,
48    error::TypeError,
49    inherent::{Const as _, GenericArg as _, IntoKind, Safety, SliceLike, Ty as _},
50};
51use smallvec::{SmallVec, smallvec};
52use tracing::{debug, instrument};
53
54use crate::{
55    Adjust, Adjustment, AutoBorrow, ParamEnvAndCrate, PointerCast, TargetFeatures,
56    autoderef::Autoderef,
57    db::{HirDatabase, InternedClosureId},
58    infer::{
59        AllowTwoPhase, AutoBorrowMutability, InferenceContext, TypeMismatch, expr::ExprIsRead,
60    },
61    next_solver::{
62        Binder, BoundConst, BoundRegion, BoundRegionKind, BoundTy, BoundTyKind, CallableIdWrapper,
63        Canonical, ClauseKind, CoercePredicate, Const, ConstKind, DbInterner, ErrorGuaranteed,
64        GenericArgs, ParamEnv, PolyFnSig, PredicateKind, Region, RegionKind, TraitRef, Ty, TyKind,
65        TypingMode,
66        infer::{
67            DbInternerInferExt, InferCtxt, InferOk, InferResult,
68            relate::RelateResult,
69            select::{ImplSource, SelectionError},
70            traits::{Obligation, ObligationCause, PredicateObligation, PredicateObligations},
71        },
72        obligation_ctxt::ObligationCtxt,
73    },
74    utils::TargetFeatureIsSafeInTarget,
75};
76
77trait CoerceDelegate<'db> {
78    fn infcx(&self) -> &InferCtxt<'db>;
79    fn param_env(&self) -> ParamEnv<'db>;
80    fn target_features(&self) -> (&TargetFeatures<'db>, TargetFeatureIsSafeInTarget);
81
82    fn set_diverging(&mut self, diverging_ty: Ty<'db>);
83
84    fn set_tainted_by_errors(&mut self);
85
86    fn type_var_is_sized(&mut self, var: TyVid) -> bool;
87}
88
89struct Coerce<D> {
90    delegate: D,
91    use_lub: bool,
92    /// Determines whether or not allow_two_phase_borrow is set on any
93    /// autoref adjustments we create while coercing. We don't want to
94    /// allow deref coercions to create two-phase borrows, at least initially,
95    /// but we do need two-phase borrows for function argument reborrows.
96    /// See rust#47489 and rust#48598
97    /// See docs on the "AllowTwoPhase" type for a more detailed discussion
98    allow_two_phase: AllowTwoPhase,
99    /// Whether we allow `NeverToAny` coercions. This is unsound if we're
100    /// coercing a place expression without it counting as a read in the MIR.
101    /// This is a side-effect of HIR not really having a great distinction
102    /// between places and values.
103    coerce_never: bool,
104    cause: ObligationCause,
105}
106
107type CoerceResult<'db> = InferResult<'db, (Vec<Adjustment<'db>>, Ty<'db>)>;
108
109/// Coercing a mutable reference to an immutable works, while
110/// coercing `&T` to `&mut T` should be forbidden.
111fn coerce_mutbls<'db>(from_mutbl: Mutability, to_mutbl: Mutability) -> RelateResult<'db, ()> {
112    if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
113}
114
115/// This always returns `Ok(...)`.
116fn success<'db>(
117    adj: Vec<Adjustment<'db>>,
118    target: Ty<'db>,
119    obligations: PredicateObligations<'db>,
120) -> CoerceResult<'db> {
121    Ok(InferOk { value: (adj, target), obligations })
122}
123
124impl<'db, D> Coerce<D>
125where
126    D: CoerceDelegate<'db>,
127{
128    #[inline]
129    fn set_tainted_by_errors(&mut self) {
130        self.delegate.set_tainted_by_errors();
131    }
132
133    #[inline]
134    fn infcx(&self) -> &InferCtxt<'db> {
135        self.delegate.infcx()
136    }
137
138    #[inline]
139    fn param_env(&self) -> ParamEnv<'db> {
140        self.delegate.param_env()
141    }
142
143    #[inline]
144    fn interner(&self) -> DbInterner<'db> {
145        self.infcx().interner
146    }
147
148    #[inline]
149    fn db(&self) -> &'db dyn HirDatabase {
150        self.interner().db
151    }
152
153    pub(crate) fn commit_if_ok<T, E>(
154        &mut self,
155        f: impl FnOnce(&mut Self) -> Result<T, E>,
156    ) -> Result<T, E> {
157        let snapshot = self.infcx().start_snapshot();
158        let result = f(self);
159        match result {
160            Ok(_) => {}
161            Err(_) => {
162                self.infcx().rollback_to(snapshot);
163            }
164        }
165        result
166    }
167
168    fn unify_raw(&self, a: Ty<'db>, b: Ty<'db>) -> InferResult<'db, Ty<'db>> {
169        debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
170        self.infcx().commit_if_ok(|_| {
171            let at = self.infcx().at(&self.cause, self.param_env());
172
173            let res = if self.use_lub {
174                at.lub(b, a)
175            } else {
176                at.sup(b, a)
177                    .map(|InferOk { value: (), obligations }| InferOk { value: b, obligations })
178            };
179
180            // In the new solver, lazy norm may allow us to shallowly equate
181            // more types, but we emit possibly impossible-to-satisfy obligations.
182            // Filter these cases out to make sure our coercion is more accurate.
183            match res {
184                Ok(InferOk { value, obligations }) => {
185                    let mut ocx = ObligationCtxt::new(self.infcx());
186                    ocx.register_obligations(obligations);
187                    if ocx.try_evaluate_obligations().is_empty() {
188                        Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
189                    } else {
190                        Err(TypeError::Mismatch)
191                    }
192                }
193                res => res,
194            }
195        })
196    }
197
198    /// Unify two types (using sub or lub).
199    fn unify(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
200        self.unify_raw(a, b)
201            .and_then(|InferOk { value: ty, obligations }| success(vec![], ty, obligations))
202    }
203
204    /// Unify two types (using sub or lub) and produce a specific coercion.
205    fn unify_and(
206        &mut self,
207        a: Ty<'db>,
208        b: Ty<'db>,
209        adjustments: impl IntoIterator<Item = Adjustment<'db>>,
210        final_adjustment: Adjust,
211    ) -> CoerceResult<'db> {
212        self.unify_raw(a, b).and_then(|InferOk { value: ty, obligations }| {
213            success(
214                adjustments
215                    .into_iter()
216                    .chain(std::iter::once(Adjustment { target: ty, kind: final_adjustment }))
217                    .collect(),
218                ty,
219                obligations,
220            )
221        })
222    }
223
224    #[instrument(skip(self))]
225    fn coerce(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
226        // First, remove any resolved type variables (at the top level, at least):
227        let a = self.infcx().shallow_resolve(a);
228        let b = self.infcx().shallow_resolve(b);
229        debug!("Coerce.tys({:?} => {:?})", a, b);
230
231        // Coercing from `!` to any type is allowed:
232        if a.is_never() {
233            // If we're coercing into an inference var, mark it as possibly diverging.
234            if b.is_infer() {
235                self.delegate.set_diverging(b);
236            }
237
238            if self.coerce_never {
239                return success(
240                    vec![Adjustment { kind: Adjust::NeverToAny, target: b }],
241                    b,
242                    PredicateObligations::new(),
243                );
244            } else {
245                // Otherwise the only coercion we can do is unification.
246                return self.unify(a, b);
247            }
248        }
249
250        // Coercing *from* an unresolved inference variable means that
251        // we have no information about the source type. This will always
252        // ultimately fall back to some form of subtyping.
253        if a.is_infer() {
254            return self.coerce_from_inference_variable(a, b);
255        }
256
257        // Consider coercing the subtype to a DST
258        //
259        // NOTE: this is wrapped in a `commit_if_ok` because it creates
260        // a "spurious" type variable, and we don't want to have that
261        // type variable in memory if the coercion fails.
262        let unsize = self.commit_if_ok(|this| this.coerce_unsized(a, b));
263        match unsize {
264            Ok(_) => {
265                debug!("coerce: unsize successful");
266                return unsize;
267            }
268            Err(error) => {
269                debug!(?error, "coerce: unsize failed");
270            }
271        }
272
273        // Examine the supertype and consider type-specific coercions, such
274        // as auto-borrowing, coercing pointer mutability, a `dyn*` coercion,
275        // or pin-ergonomics.
276        match b.kind() {
277            TyKind::RawPtr(_, b_mutbl) => {
278                return self.coerce_raw_ptr(a, b, b_mutbl);
279            }
280            TyKind::Ref(r_b, _, mutbl_b) => {
281                return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
282            }
283            _ => {}
284        }
285
286        match a.kind() {
287            TyKind::FnDef(..) => {
288                // Function items are coercible to any closure
289                // type; function pointers are not (that would
290                // require double indirection).
291                // Additionally, we permit coercion of function
292                // items to drop the unsafe qualifier.
293                self.coerce_from_fn_item(a, b)
294            }
295            TyKind::FnPtr(a_sig_tys, a_hdr) => {
296                // We permit coercion of fn pointers to drop the
297                // unsafe qualifier.
298                self.coerce_from_fn_pointer(a_sig_tys.with(a_hdr), b)
299            }
300            TyKind::Closure(closure_def_id_a, args_a) => {
301                // Non-capturing closures are coercible to
302                // function pointers or unsafe function pointers.
303                // It cannot convert closures that require unsafe.
304                self.coerce_closure_to_fn(a, closure_def_id_a.0, args_a, b)
305            }
306            _ => {
307                // Otherwise, just use unification rules.
308                self.unify(a, b)
309            }
310        }
311    }
312
313    /// Coercing *from* an inference variable. In this case, we have no information
314    /// about the source type, so we can't really do a true coercion and we always
315    /// fall back to subtyping (`unify_and`).
316    fn coerce_from_inference_variable(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
317        debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
318        debug_assert!(a.is_infer() && self.infcx().shallow_resolve(a) == a);
319        debug_assert!(self.infcx().shallow_resolve(b) == b);
320
321        if b.is_infer() {
322            // Two unresolved type variables: create a `Coerce` predicate.
323            let target_ty = if self.use_lub { self.infcx().next_ty_var() } else { b };
324
325            let mut obligations = PredicateObligations::with_capacity(2);
326            for &source_ty in &[a, b] {
327                if source_ty != target_ty {
328                    obligations.push(Obligation::new(
329                        self.interner(),
330                        self.cause.clone(),
331                        self.param_env(),
332                        Binder::dummy(PredicateKind::Coerce(CoercePredicate {
333                            a: source_ty,
334                            b: target_ty,
335                        })),
336                    ));
337                }
338            }
339
340            debug!(
341                "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
342                target_ty, obligations
343            );
344            success(vec![], target_ty, obligations)
345        } else {
346            // One unresolved type variable: just apply subtyping, we may be able
347            // to do something useful.
348            self.unify(a, b)
349        }
350    }
351
352    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
353    /// To match `A` with `B`, autoderef will be performed,
354    /// calling `deref`/`deref_mut` where necessary.
355    fn coerce_borrowed_pointer(
356        &mut self,
357        a: Ty<'db>,
358        b: Ty<'db>,
359        r_b: Region<'db>,
360        mutbl_b: Mutability,
361    ) -> CoerceResult<'db> {
362        debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
363        debug_assert!(self.infcx().shallow_resolve(a) == a);
364        debug_assert!(self.infcx().shallow_resolve(b) == b);
365
366        // If we have a parameter of type `&M T_a` and the value
367        // provided is `expr`, we will be adding an implicit borrow,
368        // meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
369        // to type check, we will construct the type that `&M*expr` would
370        // yield.
371
372        let (r_a, mt_a) = match a.kind() {
373            TyKind::Ref(r_a, ty, mutbl) => {
374                let mt_a = TypeAndMut::<DbInterner<'db>> { ty, mutbl };
375                coerce_mutbls(mt_a.mutbl, mutbl_b)?;
376                (r_a, mt_a)
377            }
378            _ => return self.unify(a, b),
379        };
380
381        let mut first_error = None;
382        let mut r_borrow_var = None;
383        let mut autoderef = Autoderef::new_with_tracking(self.infcx(), self.param_env(), a);
384        let mut found = None;
385
386        for (referent_ty, autoderefs) in autoderef.by_ref() {
387            if autoderefs == 0 {
388                // Don't let this pass, otherwise it would cause
389                // &T to autoref to &&T.
390                continue;
391            }
392
393            // At this point, we have deref'd `a` to `referent_ty`. So
394            // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
395            // In the autoderef loop for `&'a mut Vec<T>`, we would get
396            // three callbacks:
397            //
398            // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
399            // - `Vec<T>` -- 1 deref
400            // - `[T]` -- 2 deref
401            //
402            // At each point after the first callback, we want to
403            // check to see whether this would match out target type
404            // (`&'b mut [T]`) if we autoref'd it. We can't just
405            // compare the referent types, though, because we still
406            // have to consider the mutability. E.g., in the case
407            // we've been considering, we have an `&mut` reference, so
408            // the `T` in `[T]` needs to be unified with equality.
409            //
410            // Therefore, we construct reference types reflecting what
411            // the types will be after we do the final auto-ref and
412            // compare those. Note that this means we use the target
413            // mutability [1], since it may be that we are coercing
414            // from `&mut T` to `&U`.
415            //
416            // One fine point concerns the region that we use. We
417            // choose the region such that the region of the final
418            // type that results from `unify` will be the region we
419            // want for the autoref:
420            //
421            // - if in sub mode, that means we want to use `'b` (the
422            //   region from the target reference) for both
423            //   pointers [2]. This is because sub mode (somewhat
424            //   arbitrarily) returns the subtype region. In the case
425            //   where we are coercing to a target type, we know we
426            //   want to use that target type region (`'b`) because --
427            //   for the program to type-check -- it must be the
428            //   smaller of the two.
429            //   - One fine point. It may be surprising that we can
430            //     use `'b` without relating `'a` and `'b`. The reason
431            //     that this is ok is that what we produce is
432            //     effectively a `&'b *x` expression (if you could
433            //     annotate the region of a borrow), and regionck has
434            //     code that adds edges from the region of a borrow
435            //     (`'b`, here) into the regions in the borrowed
436            //     expression (`*x`, here). (Search for "link".)
437            // - if in lub mode, things can get fairly complicated. The
438            //   easiest thing is just to make a fresh
439            //   region variable [4], which effectively means we defer
440            //   the decision to region inference (and regionck, which will add
441            //   some more edges to this variable). However, this can wind up
442            //   creating a crippling number of variables in some cases --
443            //   e.g., #32278 -- so we optimize one particular case [3].
444            //   Let me try to explain with some examples:
445            //   - The "running example" above represents the simple case,
446            //     where we have one `&` reference at the outer level and
447            //     ownership all the rest of the way down. In this case,
448            //     we want `LUB('a, 'b)` as the resulting region.
449            //   - However, if there are nested borrows, that region is
450            //     too strong. Consider a coercion from `&'a &'x Rc<T>` to
451            //     `&'b T`. In this case, `'a` is actually irrelevant.
452            //     The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
453            //     we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
454            //     (The errors actually show up in borrowck, typically, because
455            //     this extra edge causes the region `'a` to be inferred to something
456            //     too big, which then results in borrowck errors.)
457            //   - We could track the innermost shared reference, but there is already
458            //     code in regionck that has the job of creating links between
459            //     the region of a borrow and the regions in the thing being
460            //     borrowed (here, `'a` and `'x`), and it knows how to handle
461            //     all the various cases. So instead we just make a region variable
462            //     and let regionck figure it out.
463            let r = if !self.use_lub {
464                r_b // [2] above
465            } else if autoderefs == 1 {
466                r_a // [3] above
467            } else {
468                if r_borrow_var.is_none() {
469                    // create var lazily, at most once
470                    let r = self.infcx().next_region_var();
471                    r_borrow_var = Some(r); // [4] above
472                }
473                r_borrow_var.unwrap()
474            };
475            let derefd_ty_a = Ty::new_ref(
476                self.interner(),
477                r,
478                referent_ty,
479                mutbl_b, // [1] above
480            );
481            match self.unify_raw(derefd_ty_a, b) {
482                Ok(ok) => {
483                    found = Some(ok);
484                    break;
485                }
486                Err(err) => {
487                    if first_error.is_none() {
488                        first_error = Some(err);
489                    }
490                }
491            }
492        }
493
494        // Extract type or return an error. We return the first error
495        // we got, which should be from relating the "base" type
496        // (e.g., in example above, the failure from relating `Vec<T>`
497        // to the target type), since that should be the least
498        // confusing.
499        let Some(InferOk { value: ty, mut obligations }) = found else {
500            if let Some(first_error) = first_error {
501                debug!("coerce_borrowed_pointer: failed with err = {:?}", first_error);
502                return Err(first_error);
503            } else {
504                // This may happen in the new trait solver since autoderef requires
505                // the pointee to be structurally normalizable, or else it'll just bail.
506                // So when we have a type like `&<not well formed>`, then we get no
507                // autoderef steps (even though there should be at least one). That means
508                // we get no type mismatches, since the loop above just exits early.
509                return Err(TypeError::Mismatch);
510            }
511        };
512
513        if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
514            // As a special case, if we would produce `&'a *x`, that's
515            // a total no-op. We end up with the type `&'a T` just as
516            // we started with. In that case, just skip it
517            // altogether. This is just an optimization.
518            //
519            // Note that for `&mut`, we DO want to reborrow --
520            // otherwise, this would be a move, which might be an
521            // error. For example `foo(self.x)` where `self` and
522            // `self.x` both have `&mut `type would be a move of
523            // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
524            // which is a borrow.
525            assert!(mutbl_b.is_not()); // can only coerce &T -> &U
526            return success(vec![], ty, obligations);
527        }
528
529        let InferOk { value: mut adjustments, obligations: o } =
530            autoderef.adjust_steps_as_infer_ok();
531        obligations.extend(o);
532
533        // Now apply the autoref.
534        let mutbl = AutoBorrowMutability::new(mutbl_b, self.allow_two_phase);
535        adjustments.push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)), target: ty });
536
537        debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
538
539        success(adjustments, ty, obligations)
540    }
541
542    /// Performs [unsized coercion] by emulating a fulfillment loop on a
543    /// `CoerceUnsized` goal until all `CoerceUnsized` and `Unsize` goals
544    /// are successfully selected.
545    ///
546    /// [unsized coercion](https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions)
547    #[instrument(skip(self), level = "debug")]
548    fn coerce_unsized(&mut self, source: Ty<'db>, target: Ty<'db>) -> CoerceResult<'db> {
549        debug!(?source, ?target);
550        debug_assert!(self.infcx().shallow_resolve(source) == source);
551        debug_assert!(self.infcx().shallow_resolve(target) == target);
552
553        // We don't apply any coercions incase either the source or target
554        // aren't sufficiently well known but tend to instead just equate
555        // them both.
556        if source.is_infer() {
557            debug!("coerce_unsized: source is a TyVar, bailing out");
558            return Err(TypeError::Mismatch);
559        }
560        if target.is_infer() {
561            debug!("coerce_unsized: target is a TyVar, bailing out");
562            return Err(TypeError::Mismatch);
563        }
564
565        // This is an optimization because coercion is one of the most common
566        // operations that we do in typeck, since it happens at every assignment
567        // and call arg (among other positions).
568        //
569        // These targets are known to never be RHS in `LHS: CoerceUnsized<RHS>`.
570        // That's because these are built-in types for which a core-provided impl
571        // doesn't exist, and for which a user-written impl is invalid.
572        //
573        // This is technically incomplete when users write impossible bounds like
574        // `where T: CoerceUnsized<usize>`, for example, but that trait is unstable
575        // and coercion is allowed to be incomplete. The only case where this matters
576        // is impossible bounds.
577        //
578        // Note that some of these types implement `LHS: Unsize<RHS>`, but they
579        // do not implement *`CoerceUnsized`* which is the root obligation of the
580        // check below.
581        match target.kind() {
582            TyKind::Bool
583            | TyKind::Char
584            | TyKind::Int(_)
585            | TyKind::Uint(_)
586            | TyKind::Float(_)
587            | TyKind::Infer(rustc_type_ir::IntVar(_) | rustc_type_ir::FloatVar(_))
588            | TyKind::Str
589            | TyKind::Array(_, _)
590            | TyKind::Slice(_)
591            | TyKind::FnDef(_, _)
592            | TyKind::FnPtr(_, _)
593            | TyKind::Dynamic(_, _)
594            | TyKind::Closure(_, _)
595            | TyKind::CoroutineClosure(_, _)
596            | TyKind::Coroutine(_, _)
597            | TyKind::CoroutineWitness(_, _)
598            | TyKind::Never
599            | TyKind::Tuple(_) => return Err(TypeError::Mismatch),
600            _ => {}
601        }
602        // Additionally, we ignore `&str -> &str` coercions, which happen very
603        // commonly since strings are one of the most used argument types in Rust,
604        // we do coercions when type checking call expressions.
605        if let TyKind::Ref(_, source_pointee, Mutability::Not) = source.kind()
606            && source_pointee.is_str()
607            && let TyKind::Ref(_, target_pointee, Mutability::Not) = target.kind()
608            && target_pointee.is_str()
609        {
610            return Err(TypeError::Mismatch);
611        }
612
613        let lang_items = self.interner().lang_items();
614        let traits = (lang_items.Unsize, lang_items.CoerceUnsized);
615        let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
616            debug!("missing Unsize or CoerceUnsized traits");
617            return Err(TypeError::Mismatch);
618        };
619
620        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
621        // a DST unless we have to. This currently comes out in the wash since
622        // we can't unify [T] with U. But to properly support DST, we need to allow
623        // that, at which point we will need extra checks on the target here.
624
625        // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
626        let reborrow = match (source.kind(), target.kind()) {
627            (TyKind::Ref(_, ty_a, mutbl_a), TyKind::Ref(_, _, mutbl_b)) => {
628                coerce_mutbls(mutbl_a, mutbl_b)?;
629
630                let r_borrow = self.infcx().next_region_var();
631
632                // We don't allow two-phase borrows here, at least for initial
633                // implementation. If it happens that this coercion is a function argument,
634                // the reborrow in coerce_borrowed_ptr will pick it up.
635                let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
636
637                Some((
638                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
639                    Adjustment {
640                        kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)),
641                        target: Ty::new_ref(self.interner(), r_borrow, ty_a, mutbl_b),
642                    },
643                ))
644            }
645            (TyKind::Ref(_, ty_a, mt_a), TyKind::RawPtr(_, mt_b)) => {
646                coerce_mutbls(mt_a, mt_b)?;
647
648                Some((
649                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
650                    Adjustment {
651                        kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
652                        target: Ty::new_ptr(self.interner(), ty_a, mt_b),
653                    },
654                ))
655            }
656            _ => None,
657        };
658        let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
659
660        // Setup either a subtyping or a LUB relationship between
661        // the `CoerceUnsized` target type and the expected type.
662        // We only have the latter, so we use an inference variable
663        // for the former and let type inference do the rest.
664        let coerce_target = self.infcx().next_ty_var();
665
666        let mut coercion = self.unify_and(
667            coerce_target,
668            target,
669            reborrow.into_iter().flat_map(|(deref, autoref)| [deref, autoref]),
670            Adjust::Pointer(PointerCast::Unsize),
671        )?;
672
673        // Create an obligation for `Source: CoerceUnsized<Target>`.
674        let cause = self.cause.clone();
675
676        // Use a FIFO queue for this custom fulfillment procedure.
677        //
678        // A Vec (or SmallVec) is not a natural choice for a queue. However,
679        // this code path is hot, and this queue usually has a max length of 1
680        // and almost never more than 3. By using a SmallVec we avoid an
681        // allocation, at the (very small) cost of (occasionally) having to
682        // shift subsequent elements down when removing the front element.
683        let mut queue: SmallVec<[PredicateObligation<'db>; 4]> = smallvec![Obligation::new(
684            self.interner(),
685            cause,
686            self.param_env(),
687            TraitRef::new(
688                self.interner(),
689                coerce_unsized_did.into(),
690                [coerce_source, coerce_target]
691            )
692        )];
693        // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
694        // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
695        // inference might unify those two inner type variables later.
696        let traits = [coerce_unsized_did, unsize_did];
697        while !queue.is_empty() {
698            let obligation = queue.remove(0);
699            let trait_pred = match obligation.predicate.kind().no_bound_vars() {
700                Some(PredicateKind::Clause(ClauseKind::Trait(trait_pred)))
701                    if traits.contains(&trait_pred.def_id().0) =>
702                {
703                    self.infcx().resolve_vars_if_possible(trait_pred)
704                }
705                // Eagerly process alias-relate obligations in new trait solver,
706                // since these can be emitted in the process of solving trait goals,
707                // but we need to constrain vars before processing goals mentioning
708                // them.
709                Some(PredicateKind::AliasRelate(..)) => {
710                    let mut ocx = ObligationCtxt::new(self.infcx());
711                    ocx.register_obligation(obligation);
712                    if !ocx.try_evaluate_obligations().is_empty() {
713                        return Err(TypeError::Mismatch);
714                    }
715                    coercion.obligations.extend(ocx.into_pending_obligations());
716                    continue;
717                }
718                _ => {
719                    coercion.obligations.push(obligation);
720                    continue;
721                }
722            };
723            debug!("coerce_unsized resolve step: {:?}", trait_pred);
724            match self.infcx().select(&obligation.with(self.interner(), trait_pred)) {
725                // Uncertain or unimplemented.
726                Ok(None) => {
727                    if trait_pred.def_id().0 == unsize_did {
728                        let self_ty = trait_pred.self_ty();
729                        let unsize_ty = trait_pred.trait_ref.args.inner()[1].expect_ty();
730                        debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
731                        match (self_ty.kind(), unsize_ty.kind()) {
732                            (TyKind::Infer(rustc_type_ir::TyVar(v)), TyKind::Dynamic(..))
733                                if self.delegate.type_var_is_sized(v) =>
734                            {
735                                debug!("coerce_unsized: have sized infer {:?}", v);
736                                coercion.obligations.push(obligation);
737                                // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
738                                // for unsizing.
739                            }
740                            _ => {
741                                // Some other case for `$0: Unsize<Something>`. Note that we
742                                // hit this case even if `Something` is a sized type, so just
743                                // don't do the coercion.
744                                debug!("coerce_unsized: ambiguous unsize");
745                                return Err(TypeError::Mismatch);
746                            }
747                        }
748                    } else {
749                        debug!("coerce_unsized: early return - ambiguous");
750                        if !coerce_source.references_non_lt_error()
751                            && !coerce_target.references_non_lt_error()
752                        {
753                            // rustc always early-returns here, even when the types contains errors. However not bailing
754                            // improves error recovery, and while we don't implement generic consts properly, it also helps
755                            // correct code.
756                            return Err(TypeError::Mismatch);
757                        }
758                    }
759                }
760                Err(SelectionError::Unimplemented) => {
761                    debug!("coerce_unsized: early return - can't prove obligation");
762                    return Err(TypeError::Mismatch);
763                }
764
765                Err(SelectionError::TraitDynIncompatible(_)) => {
766                    // Dyn compatibility errors in coercion will *always* be due to the
767                    // fact that the RHS of the coercion is a non-dyn compatible `dyn Trait`
768                    // written in source somewhere (otherwise we will never have lowered
769                    // the dyn trait from HIR to middle).
770                    //
771                    // There's no reason to emit yet another dyn compatibility error,
772                    // especially since the span will differ slightly and thus not be
773                    // deduplicated at all!
774                    self.set_tainted_by_errors();
775                }
776                Err(_err) => {
777                    // FIXME: Report an error:
778                    // let guar = self.err_ctxt().report_selection_error(
779                    //     obligation.clone(),
780                    //     &obligation,
781                    //     &err,
782                    // );
783                    self.set_tainted_by_errors();
784                    // Treat this like an obligation and follow through
785                    // with the unsizing - the lack of a coercion should
786                    // be silent, as it causes a type mismatch later.
787                }
788
789                Ok(Some(ImplSource::UserDefined(impl_source))) => {
790                    queue.extend(impl_source.nested);
791                }
792                Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
793            }
794        }
795
796        Ok(coercion)
797    }
798
799    fn coerce_from_safe_fn(
800        &mut self,
801        fn_ty_a: PolyFnSig<'db>,
802        b: Ty<'db>,
803        adjustment: Option<Adjust>,
804    ) -> CoerceResult<'db> {
805        debug_assert!(self.infcx().shallow_resolve(b) == b);
806
807        self.commit_if_ok(|this| {
808            if let TyKind::FnPtr(_, hdr_b) = b.kind()
809                && fn_ty_a.safety().is_safe()
810                && !hdr_b.safety.is_safe()
811            {
812                let unsafe_a = Ty::safe_to_unsafe_fn_ty(this.interner(), fn_ty_a);
813                this.unify_and(
814                    unsafe_a,
815                    b,
816                    adjustment.map(|kind| Adjustment {
817                        kind,
818                        target: Ty::new_fn_ptr(this.interner(), fn_ty_a),
819                    }),
820                    Adjust::Pointer(PointerCast::UnsafeFnPointer),
821                )
822            } else {
823                let a = Ty::new_fn_ptr(this.interner(), fn_ty_a);
824                match adjustment {
825                    Some(adjust) => this.unify_and(a, b, [], adjust),
826                    None => this.unify(a, b),
827                }
828            }
829        })
830    }
831
832    fn coerce_from_fn_pointer(&mut self, fn_ty_a: PolyFnSig<'db>, b: Ty<'db>) -> CoerceResult<'db> {
833        debug!(?fn_ty_a, ?b, "coerce_from_fn_pointer");
834        debug_assert!(self.infcx().shallow_resolve(b) == b);
835
836        self.coerce_from_safe_fn(fn_ty_a, b, None)
837    }
838
839    fn coerce_from_fn_item(&mut self, a: Ty<'db>, b: Ty<'db>) -> CoerceResult<'db> {
840        debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
841        debug_assert!(self.infcx().shallow_resolve(a) == a);
842        debug_assert!(self.infcx().shallow_resolve(b) == b);
843
844        match b.kind() {
845            TyKind::FnPtr(_, b_hdr) => {
846                let a_sig = a.fn_sig(self.interner());
847                if let TyKind::FnDef(def_id, _) = a.kind() {
848                    // Intrinsics are not coercible to function pointers
849                    if let CallableDefId::FunctionId(def_id) = def_id.0 {
850                        if FunctionSignature::is_intrinsic(self.db(), def_id) {
851                            return Err(TypeError::IntrinsicCast);
852                        }
853
854                        let attrs = AttrFlags::query(self.db(), def_id.into());
855                        if attrs.contains(AttrFlags::RUSTC_FORCE_INLINE) {
856                            return Err(TypeError::ForceInlineCast);
857                        }
858
859                        if b_hdr.safety.is_safe() && attrs.contains(AttrFlags::HAS_TARGET_FEATURE) {
860                            let fn_target_features =
861                                TargetFeatures::from_fn_no_implications(self.db(), def_id);
862                            // Allow the coercion if the current function has all the features that would be
863                            // needed to call the coercee safely.
864                            let (target_features, target_feature_is_safe) =
865                                self.delegate.target_features();
866                            if target_feature_is_safe == TargetFeatureIsSafeInTarget::No
867                                && !target_features.enabled.is_superset(&fn_target_features.enabled)
868                            {
869                                return Err(TypeError::TargetFeatureCast(
870                                    CallableIdWrapper(def_id.into()).into(),
871                                ));
872                            }
873                        }
874                    }
875                }
876
877                self.coerce_from_safe_fn(
878                    a_sig,
879                    b,
880                    Some(Adjust::Pointer(PointerCast::ReifyFnPointer)),
881                )
882            }
883            _ => self.unify(a, b),
884        }
885    }
886
887    /// Attempts to coerce from the type of a non-capturing closure
888    /// into a function pointer.
889    fn coerce_closure_to_fn(
890        &mut self,
891        a: Ty<'db>,
892        _closure_def_id_a: InternedClosureId,
893        args_a: GenericArgs<'db>,
894        b: Ty<'db>,
895    ) -> CoerceResult<'db> {
896        debug_assert!(self.infcx().shallow_resolve(a) == a);
897        debug_assert!(self.infcx().shallow_resolve(b) == b);
898
899        match b.kind() {
900            // FIXME: We need to have an `upvars_mentioned()` query:
901            // At this point we haven't done capture analysis, which means
902            // that the ClosureArgs just contains an inference variable instead
903            // of tuple of captured types.
904            //
905            // All we care here is if any variable is being captured and not the exact paths,
906            // so we check `upvars_mentioned` for root variables being captured.
907            TyKind::FnPtr(_, hdr) =>
908            // if self
909            //     .db
910            //     .upvars_mentioned(closure_def_id_a.expect_local())
911            //     .is_none_or(|u| u.is_empty()) =>
912            {
913                // We coerce the closure, which has fn type
914                //     `extern "rust-call" fn((arg0,arg1,...)) -> _`
915                // to
916                //     `fn(arg0,arg1,...) -> _`
917                // or
918                //     `unsafe fn(arg0,arg1,...) -> _`
919                let safety = hdr.safety;
920                let closure_sig = args_a.closure_sig_untupled().map_bound(|mut sig| {
921                    sig.safety = hdr.safety;
922                    sig
923                });
924                let pointer_ty = Ty::new_fn_ptr(self.interner(), closure_sig);
925                debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
926                self.unify_and(
927                    pointer_ty,
928                    b,
929                    [],
930                    Adjust::Pointer(PointerCast::ClosureFnPointer(safety)),
931                )
932            }
933            _ => self.unify(a, b),
934        }
935    }
936
937    fn coerce_raw_ptr(&mut self, a: Ty<'db>, b: Ty<'db>, mutbl_b: Mutability) -> CoerceResult<'db> {
938        debug!("coerce_raw_ptr(a={:?}, b={:?})", a, b);
939        debug_assert!(self.infcx().shallow_resolve(a) == a);
940        debug_assert!(self.infcx().shallow_resolve(b) == b);
941
942        let (is_ref, mt_a) = match a.kind() {
943            TyKind::Ref(_, ty, mutbl) => (true, TypeAndMut::<DbInterner<'db>> { ty, mutbl }),
944            TyKind::RawPtr(ty, mutbl) => (false, TypeAndMut { ty, mutbl }),
945            _ => return self.unify(a, b),
946        };
947        coerce_mutbls(mt_a.mutbl, mutbl_b)?;
948
949        // Check that the types which they point at are compatible.
950        let a_raw = Ty::new_ptr(self.interner(), mt_a.ty, mutbl_b);
951        // Although references and raw ptrs have the same
952        // representation, we still register an Adjust::DerefRef so that
953        // regionck knows that the region for `a` must be valid here.
954        if is_ref {
955            self.unify_and(
956                a_raw,
957                b,
958                [Adjustment { kind: Adjust::Deref(None), target: mt_a.ty }],
959                Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)),
960            )
961        } else if mt_a.mutbl != mutbl_b {
962            self.unify_and(a_raw, b, [], Adjust::Pointer(PointerCast::MutToConstPointer))
963        } else {
964            self.unify(a_raw, b)
965        }
966    }
967}
968
969struct InferenceCoercionDelegate<'a, 'b, 'db>(&'a mut InferenceContext<'b, 'db>);
970
971impl<'db> CoerceDelegate<'db> for InferenceCoercionDelegate<'_, '_, 'db> {
972    #[inline]
973    fn infcx(&self) -> &InferCtxt<'db> {
974        &self.0.table.infer_ctxt
975    }
976    #[inline]
977    fn param_env(&self) -> ParamEnv<'db> {
978        self.0.table.param_env
979    }
980
981    #[inline]
982    fn target_features(&self) -> (&TargetFeatures<'db>, TargetFeatureIsSafeInTarget) {
983        self.0.target_features()
984    }
985
986    #[inline]
987    fn set_diverging(&mut self, diverging_ty: Ty<'db>) {
988        self.0.table.set_diverging(diverging_ty);
989    }
990
991    #[inline]
992    fn set_tainted_by_errors(&mut self) {
993        self.0.set_tainted_by_errors();
994    }
995
996    #[inline]
997    fn type_var_is_sized(&mut self, var: TyVid) -> bool {
998        self.0.table.type_var_is_sized(var)
999    }
1000}
1001
1002impl<'db> InferenceContext<'_, 'db> {
1003    /// Attempt to coerce an expression to a type, and return the
1004    /// adjusted type of the expression, if successful.
1005    /// Adjustments are only recorded if the coercion succeeded.
1006    /// The expressions *must not* have any preexisting adjustments.
1007    pub(crate) fn coerce(
1008        &mut self,
1009        expr: ExprOrPatId,
1010        expr_ty: Ty<'db>,
1011        mut target: Ty<'db>,
1012        allow_two_phase: AllowTwoPhase,
1013        expr_is_read: ExprIsRead,
1014    ) -> RelateResult<'db, Ty<'db>> {
1015        let source = self.table.try_structurally_resolve_type(expr_ty);
1016        target = self.table.try_structurally_resolve_type(target);
1017        debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
1018
1019        let cause = ObligationCause::new();
1020        let coerce_never = match expr {
1021            ExprOrPatId::ExprId(idx) => {
1022                self.expr_guaranteed_to_constitute_read_for_never(idx, expr_is_read)
1023            }
1024            // `PatId` is passed for `PatKind::Path`.
1025            ExprOrPatId::PatId(_) => false,
1026        };
1027        let mut coerce = Coerce {
1028            delegate: InferenceCoercionDelegate(self),
1029            cause,
1030            allow_two_phase,
1031            coerce_never,
1032            use_lub: false,
1033        };
1034        let ok = coerce.commit_if_ok(|coerce| coerce.coerce(source, target))?;
1035
1036        let (adjustments, _) = self.table.register_infer_ok(ok);
1037        match expr {
1038            ExprOrPatId::ExprId(expr) => self.write_expr_adj(expr, adjustments.into_boxed_slice()),
1039            ExprOrPatId::PatId(pat) => self
1040                .write_pat_adj(pat, adjustments.into_iter().map(|adjust| adjust.target).collect()),
1041        }
1042        Ok(target)
1043    }
1044
1045    /// Given some expressions, their known unified type and another expression,
1046    /// tries to unify the types, potentially inserting coercions on any of the
1047    /// provided expressions and returns their LUB (aka "common supertype").
1048    ///
1049    /// This is really an internal helper. From outside the coercion
1050    /// module, you should instantiate a `CoerceMany` instance.
1051    fn try_find_coercion_lub(
1052        &mut self,
1053        exprs: &[ExprId],
1054        prev_ty: Ty<'db>,
1055        new: ExprId,
1056        new_ty: Ty<'db>,
1057    ) -> RelateResult<'db, Ty<'db>> {
1058        let prev_ty = self.table.try_structurally_resolve_type(prev_ty);
1059        let new_ty = self.table.try_structurally_resolve_type(new_ty);
1060        debug!(
1061            "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
1062            prev_ty,
1063            new_ty,
1064            exprs.len()
1065        );
1066
1067        // The following check fixes #88097, where the compiler erroneously
1068        // attempted to coerce a closure type to itself via a function pointer.
1069        if prev_ty == new_ty {
1070            return Ok(prev_ty);
1071        }
1072
1073        let is_force_inline = |ty: Ty<'db>| {
1074            if let TyKind::FnDef(CallableIdWrapper(CallableDefId::FunctionId(did)), _) = ty.kind() {
1075                AttrFlags::query(self.db, did.into()).contains(AttrFlags::RUSTC_FORCE_INLINE)
1076            } else {
1077                false
1078            }
1079        };
1080        if is_force_inline(prev_ty) || is_force_inline(new_ty) {
1081            return Err(TypeError::ForceInlineCast);
1082        }
1083
1084        // Special-case that coercion alone cannot handle:
1085        // Function items or non-capturing closures of differing IDs or GenericArgs.
1086        let (a_sig, b_sig) = {
1087            let is_capturing_closure = |_ty: Ty<'db>| {
1088                // FIXME:
1089                // if let TyKind::Closure(closure_def_id, _args) = ty.kind() {
1090                //     self.db.upvars_mentioned(closure_def_id.expect_local()).is_some()
1091                // } else {
1092                //     false
1093                // }
1094                false
1095            };
1096            if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
1097                (None, None)
1098            } else {
1099                match (prev_ty.kind(), new_ty.kind()) {
1100                    (TyKind::FnDef(..), TyKind::FnDef(..)) => {
1101                        // Don't reify if the function types have a LUB, i.e., they
1102                        // are the same function and their parameters have a LUB.
1103                        match self.table.commit_if_ok(|table| {
1104                            // We need to eagerly handle nested obligations due to lazy norm.
1105                            let mut ocx = ObligationCtxt::new(&table.infer_ctxt);
1106                            let value =
1107                                ocx.lub(&ObligationCause::new(), table.param_env, prev_ty, new_ty)?;
1108                            if ocx.try_evaluate_obligations().is_empty() {
1109                                Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
1110                            } else {
1111                                Err(TypeError::Mismatch)
1112                            }
1113                        }) {
1114                            // We have a LUB of prev_ty and new_ty, just return it.
1115                            Ok(ok) => return Ok(self.table.register_infer_ok(ok)),
1116                            Err(_) => (
1117                                Some(prev_ty.fn_sig(self.table.interner())),
1118                                Some(new_ty.fn_sig(self.table.interner())),
1119                            ),
1120                        }
1121                    }
1122                    (TyKind::Closure(_, args), TyKind::FnDef(..)) => {
1123                        let b_sig = new_ty.fn_sig(self.table.interner());
1124                        let a_sig = args.closure_sig_untupled().map_bound(|mut sig| {
1125                            sig.safety = b_sig.safety();
1126                            sig
1127                        });
1128                        (Some(a_sig), Some(b_sig))
1129                    }
1130                    (TyKind::FnDef(..), TyKind::Closure(_, args)) => {
1131                        let a_sig = prev_ty.fn_sig(self.table.interner());
1132                        let b_sig = args.closure_sig_untupled().map_bound(|mut sig| {
1133                            sig.safety = a_sig.safety();
1134                            sig
1135                        });
1136                        (Some(a_sig), Some(b_sig))
1137                    }
1138                    (TyKind::Closure(_, args_a), TyKind::Closure(_, args_b)) => {
1139                        (Some(args_a.closure_sig_untupled()), Some(args_b.closure_sig_untupled()))
1140                    }
1141                    _ => (None, None),
1142                }
1143            }
1144        };
1145        if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
1146            // The signature must match.
1147            let sig = self
1148                .table
1149                .infer_ctxt
1150                .at(&ObligationCause::new(), self.table.param_env)
1151                .lub(a_sig, b_sig)
1152                .map(|ok| self.table.register_infer_ok(ok))?;
1153
1154            // Reify both sides and return the reified fn pointer type.
1155            let fn_ptr = Ty::new_fn_ptr(self.table.interner(), sig);
1156            let prev_adjustment = match prev_ty.kind() {
1157                TyKind::Closure(..) => {
1158                    Adjust::Pointer(PointerCast::ClosureFnPointer(a_sig.safety()))
1159                }
1160                TyKind::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
1161                _ => panic!("should not try to coerce a {prev_ty:?} to a fn pointer"),
1162            };
1163            let next_adjustment = match new_ty.kind() {
1164                TyKind::Closure(..) => {
1165                    Adjust::Pointer(PointerCast::ClosureFnPointer(b_sig.safety()))
1166                }
1167                TyKind::FnDef(..) => Adjust::Pointer(PointerCast::ReifyFnPointer),
1168                _ => panic!("should not try to coerce a {new_ty:?} to a fn pointer"),
1169            };
1170            for &expr in exprs {
1171                self.write_expr_adj(
1172                    expr,
1173                    Box::new([Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }]),
1174                );
1175            }
1176            self.write_expr_adj(
1177                new,
1178                Box::new([Adjustment { kind: next_adjustment, target: fn_ptr }]),
1179            );
1180            return Ok(fn_ptr);
1181        }
1182
1183        // Configure a Coerce instance to compute the LUB.
1184        // We don't allow two-phase borrows on any autorefs this creates since we
1185        // probably aren't processing function arguments here and even if we were,
1186        // they're going to get autorefed again anyway and we can apply 2-phase borrows
1187        // at that time.
1188        //
1189        // NOTE: we set `coerce_never` to `true` here because coercion LUBs only
1190        // operate on values and not places, so a never coercion is valid.
1191        let mut coerce = Coerce {
1192            delegate: InferenceCoercionDelegate(self),
1193            cause: ObligationCause::new(),
1194            allow_two_phase: AllowTwoPhase::No,
1195            coerce_never: true,
1196            use_lub: true,
1197        };
1198
1199        // First try to coerce the new expression to the type of the previous ones,
1200        // but only if the new expression has no coercion already applied to it.
1201        let mut first_error = None;
1202        if !coerce.delegate.0.result.expr_adjustments.contains_key(&new) {
1203            let result = coerce.commit_if_ok(|coerce| coerce.coerce(new_ty, prev_ty));
1204            match result {
1205                Ok(ok) => {
1206                    let (adjustments, target) = self.table.register_infer_ok(ok);
1207                    self.write_expr_adj(new, adjustments.into_boxed_slice());
1208                    debug!(
1209                        "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
1210                        new_ty, prev_ty, target
1211                    );
1212                    return Ok(target);
1213                }
1214                Err(e) => first_error = Some(e),
1215            }
1216        }
1217
1218        match coerce.commit_if_ok(|coerce| coerce.coerce(prev_ty, new_ty)) {
1219            Err(_) => {
1220                // Avoid giving strange errors on failed attempts.
1221                if let Some(e) = first_error {
1222                    Err(e)
1223                } else {
1224                    Err(self
1225                        .table
1226                        .commit_if_ok(|table| {
1227                            table
1228                                .infer_ctxt
1229                                .at(&ObligationCause::new(), table.param_env)
1230                                .lub(prev_ty, new_ty)
1231                        })
1232                        .unwrap_err())
1233                }
1234            }
1235            Ok(ok) => {
1236                let (adjustments, target) = self.table.register_infer_ok(ok);
1237                for &expr in exprs {
1238                    self.write_expr_adj(expr, adjustments.as_slice().into());
1239                }
1240                debug!(
1241                    "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
1242                    prev_ty, new_ty, target
1243                );
1244                Ok(target)
1245            }
1246        }
1247    }
1248}
1249
1250/// CoerceMany encapsulates the pattern you should use when you have
1251/// many expressions that are all getting coerced to a common
1252/// type. This arises, for example, when you have a match (the result
1253/// of each arm is coerced to a common type). It also arises in less
1254/// obvious places, such as when you have many `break foo` expressions
1255/// that target the same loop, or the various `return` expressions in
1256/// a function.
1257///
1258/// The basic protocol is as follows:
1259///
1260/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
1261///   This will also serve as the "starting LUB". The expectation is
1262///   that this type is something which all of the expressions *must*
1263///   be coercible to. Use a fresh type variable if needed.
1264/// - For each expression whose result is to be coerced, invoke `coerce()` with.
1265///   - In some cases we wish to coerce "non-expressions" whose types are implicitly
1266///     unit. This happens for example if you have a `break` with no expression,
1267///     or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
1268///   - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
1269///     from you so that you don't have to worry your pretty head about it.
1270///     But if an error is reported, the final type will be `err`.
1271///   - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
1272///     previously coerced expressions.
1273/// - When all done, invoke `complete()`. This will return the LUB of
1274///   all your expressions.
1275///   - WARNING: I don't believe this final type is guaranteed to be
1276///     related to your initial `expected_ty` in any particular way,
1277///     although it will typically be a subtype, so you should check it.
1278///   - Invoking `complete()` may cause us to go and adjust the "adjustments" on
1279///     previously coerced expressions.
1280///
1281/// Example:
1282///
1283/// ```ignore (illustrative)
1284/// let mut coerce = CoerceMany::new(expected_ty);
1285/// for expr in exprs {
1286///     let expr_ty = fcx.check_expr_with_expectation(expr, expected);
1287///     coerce.coerce(fcx, &cause, expr, expr_ty);
1288/// }
1289/// let final_ty = coerce.complete(fcx);
1290/// ```
1291#[derive(Debug, Clone)]
1292pub(crate) struct CoerceMany<'db, 'exprs> {
1293    expected_ty: Ty<'db>,
1294    final_ty: Option<Ty<'db>>,
1295    expressions: Expressions<'exprs>,
1296    pushed: usize,
1297}
1298
1299/// The type of a `CoerceMany` that is storing up the expressions into
1300/// a buffer. We use this for things like `break`.
1301pub(crate) type DynamicCoerceMany<'db> = CoerceMany<'db, 'db>;
1302
1303#[derive(Debug, Clone)]
1304enum Expressions<'exprs> {
1305    Dynamic(SmallVec<[ExprId; 4]>),
1306    UpFront(&'exprs [ExprId]),
1307}
1308
1309impl<'db, 'exprs> CoerceMany<'db, 'exprs> {
1310    /// The usual case; collect the set of expressions dynamically.
1311    /// If the full set of coercion sites is known before hand,
1312    /// consider `with_coercion_sites()` instead to avoid allocation.
1313    pub(crate) fn new(expected_ty: Ty<'db>) -> Self {
1314        Self::make(expected_ty, Expressions::Dynamic(SmallVec::new()))
1315    }
1316
1317    /// As an optimization, you can create a `CoerceMany` with a
1318    /// preexisting slice of expressions. In this case, you are
1319    /// expected to pass each element in the slice to `coerce(...)` in
1320    /// order. This is used with arrays in particular to avoid
1321    /// needlessly cloning the slice.
1322    pub(crate) fn with_coercion_sites(
1323        expected_ty: Ty<'db>,
1324        coercion_sites: &'exprs [ExprId],
1325    ) -> Self {
1326        Self::make(expected_ty, Expressions::UpFront(coercion_sites))
1327    }
1328
1329    fn make(expected_ty: Ty<'db>, expressions: Expressions<'exprs>) -> Self {
1330        CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
1331    }
1332
1333    /// Returns the "expected type" with which this coercion was
1334    /// constructed. This represents the "downward propagated" type
1335    /// that was given to us at the start of typing whatever construct
1336    /// we are typing (e.g., the match expression).
1337    ///
1338    /// Typically, this is used as the expected type when
1339    /// type-checking each of the alternative expressions whose types
1340    /// we are trying to merge.
1341    pub(crate) fn expected_ty(&self) -> Ty<'db> {
1342        self.expected_ty
1343    }
1344
1345    /// Returns the current "merged type", representing our best-guess
1346    /// at the LUB of the expressions we've seen so far (if any). This
1347    /// isn't *final* until you call `self.complete()`, which will return
1348    /// the merged type.
1349    pub(crate) fn merged_ty(&self) -> Ty<'db> {
1350        self.final_ty.unwrap_or(self.expected_ty)
1351    }
1352
1353    /// Indicates that the value generated by `expression`, which is
1354    /// of type `expression_ty`, is one of the possibilities that we
1355    /// could coerce from. This will record `expression`, and later
1356    /// calls to `coerce` may come back and add adjustments and things
1357    /// if necessary.
1358    pub(crate) fn coerce(
1359        &mut self,
1360        icx: &mut InferenceContext<'_, 'db>,
1361        cause: &ObligationCause,
1362        expression: ExprId,
1363        expression_ty: Ty<'db>,
1364        expr_is_read: ExprIsRead,
1365    ) {
1366        self.coerce_inner(icx, cause, expression, expression_ty, false, false, expr_is_read)
1367    }
1368
1369    /// Indicates that one of the inputs is a "forced unit". This
1370    /// occurs in a case like `if foo { ... };`, where the missing else
1371    /// generates a "forced unit". Another example is a `loop { break;
1372    /// }`, where the `break` has no argument expression. We treat
1373    /// these cases slightly differently for error-reporting
1374    /// purposes. Note that these tend to correspond to cases where
1375    /// the `()` expression is implicit in the source, and hence we do
1376    /// not take an expression argument.
1377    ///
1378    /// The `augment_error` gives you a chance to extend the error
1379    /// message, in case any results (e.g., we use this to suggest
1380    /// removing a `;`).
1381    pub(crate) fn coerce_forced_unit(
1382        &mut self,
1383        icx: &mut InferenceContext<'_, 'db>,
1384        expr: ExprId,
1385        cause: &ObligationCause,
1386        label_unit_as_expected: bool,
1387        expr_is_read: ExprIsRead,
1388    ) {
1389        self.coerce_inner(
1390            icx,
1391            cause,
1392            expr,
1393            icx.types.unit,
1394            true,
1395            label_unit_as_expected,
1396            expr_is_read,
1397        )
1398    }
1399
1400    /// The inner coercion "engine". If `expression` is `None`, this
1401    /// is a forced-unit case, and hence `expression_ty` must be
1402    /// `Nil`.
1403    pub(crate) fn coerce_inner(
1404        &mut self,
1405        icx: &mut InferenceContext<'_, 'db>,
1406        cause: &ObligationCause,
1407        expression: ExprId,
1408        mut expression_ty: Ty<'db>,
1409        force_unit: bool,
1410        label_expression_as_expected: bool,
1411        expr_is_read: ExprIsRead,
1412    ) {
1413        // Incorporate whatever type inference information we have
1414        // until now; in principle we might also want to process
1415        // pending obligations, but doing so should only improve
1416        // compatibility (hopefully that is true) by helping us
1417        // uncover never types better.
1418        if expression_ty.is_ty_var() {
1419            expression_ty = icx.shallow_resolve(expression_ty);
1420        }
1421
1422        let (expected, found) = if label_expression_as_expected {
1423            // In the case where this is a "forced unit", like
1424            // `break`, we want to call the `()` "expected"
1425            // since it is implied by the syntax.
1426            // (Note: not all force-units work this way.)"
1427            (expression_ty, self.merged_ty())
1428        } else {
1429            // Otherwise, the "expected" type for error
1430            // reporting is the current unification type,
1431            // which is basically the LUB of the expressions
1432            // we've seen so far (combined with the expected
1433            // type)
1434            (self.merged_ty(), expression_ty)
1435        };
1436
1437        // Handle the actual type unification etc.
1438        let result = if !force_unit {
1439            if self.pushed == 0 {
1440                // Special-case the first expression we are coercing.
1441                // To be honest, I'm not entirely sure why we do this.
1442                // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
1443                icx.coerce(
1444                    expression.into(),
1445                    expression_ty,
1446                    self.expected_ty,
1447                    AllowTwoPhase::No,
1448                    expr_is_read,
1449                )
1450            } else {
1451                match self.expressions {
1452                    Expressions::Dynamic(ref exprs) => icx.try_find_coercion_lub(
1453                        exprs,
1454                        self.merged_ty(),
1455                        expression,
1456                        expression_ty,
1457                    ),
1458                    Expressions::UpFront(coercion_sites) => icx.try_find_coercion_lub(
1459                        &coercion_sites[0..self.pushed],
1460                        self.merged_ty(),
1461                        expression,
1462                        expression_ty,
1463                    ),
1464                }
1465            }
1466        } else {
1467            // this is a hack for cases where we default to `()` because
1468            // the expression etc has been omitted from the source. An
1469            // example is an `if let` without an else:
1470            //
1471            //     if let Some(x) = ... { }
1472            //
1473            // we wind up with a second match arm that is like `_ =>
1474            // ()`. That is the case we are considering here. We take
1475            // a different path to get the right "expected, found"
1476            // message and so forth (and because we know that
1477            // `expression_ty` will be unit).
1478            //
1479            // Another example is `break` with no argument expression.
1480            assert!(expression_ty.is_unit(), "if let hack without unit type");
1481            icx.table.infer_ctxt.at(cause, icx.table.param_env).eq(expected, found).map(
1482                |infer_ok| {
1483                    icx.table.register_infer_ok(infer_ok);
1484                    expression_ty
1485                },
1486            )
1487        };
1488
1489        debug!(?result);
1490        match result {
1491            Ok(v) => {
1492                self.final_ty = Some(v);
1493                match self.expressions {
1494                    Expressions::Dynamic(ref mut buffer) => buffer.push(expression),
1495                    Expressions::UpFront(coercion_sites) => {
1496                        // if the user gave us an array to validate, check that we got
1497                        // the next expression in the list, as expected
1498                        assert_eq!(coercion_sites[self.pushed], expression);
1499                    }
1500                }
1501            }
1502            Err(_coercion_error) => {
1503                // Mark that we've failed to coerce the types here to suppress
1504                // any superfluous errors we might encounter while trying to
1505                // emit or provide suggestions on how to fix the initial error.
1506                icx.set_tainted_by_errors();
1507
1508                self.final_ty = Some(icx.types.error);
1509
1510                icx.result.type_mismatches.get_or_insert_default().insert(
1511                    expression.into(),
1512                    if label_expression_as_expected {
1513                        TypeMismatch { expected: found, actual: expected }
1514                    } else {
1515                        TypeMismatch { expected, actual: found }
1516                    },
1517                );
1518            }
1519        }
1520
1521        self.pushed += 1;
1522    }
1523
1524    pub(crate) fn complete(self, icx: &mut InferenceContext<'_, 'db>) -> Ty<'db> {
1525        if let Some(final_ty) = self.final_ty {
1526            final_ty
1527        } else {
1528            // If we only had inputs that were of type `!` (or no
1529            // inputs at all), then the final type is `!`.
1530            assert_eq!(self.pushed, 0);
1531            icx.types.never
1532        }
1533    }
1534}
1535
1536pub fn could_coerce<'db>(
1537    db: &'db dyn HirDatabase,
1538    env: ParamEnvAndCrate<'db>,
1539    tys: &Canonical<'db, (Ty<'db>, Ty<'db>)>,
1540) -> bool {
1541    coerce(db, env, tys).is_ok()
1542}
1543
1544struct HirCoercionDelegate<'a, 'db> {
1545    infcx: &'a InferCtxt<'db>,
1546    param_env: ParamEnv<'db>,
1547    target_features: &'a TargetFeatures<'db>,
1548}
1549
1550impl<'db> CoerceDelegate<'db> for HirCoercionDelegate<'_, 'db> {
1551    #[inline]
1552    fn infcx(&self) -> &InferCtxt<'db> {
1553        self.infcx
1554    }
1555    #[inline]
1556    fn param_env(&self) -> ParamEnv<'db> {
1557        self.param_env
1558    }
1559    fn target_features(&self) -> (&TargetFeatures<'db>, TargetFeatureIsSafeInTarget) {
1560        (self.target_features, TargetFeatureIsSafeInTarget::No)
1561    }
1562    fn set_diverging(&mut self, _diverging_ty: Ty<'db>) {}
1563    fn set_tainted_by_errors(&mut self) {}
1564    fn type_var_is_sized(&mut self, _var: TyVid) -> bool {
1565        false
1566    }
1567}
1568
1569fn coerce<'db>(
1570    db: &'db dyn HirDatabase,
1571    env: ParamEnvAndCrate<'db>,
1572    tys: &Canonical<'db, (Ty<'db>, Ty<'db>)>,
1573) -> Result<(Vec<Adjustment<'db>>, Ty<'db>), TypeError<DbInterner<'db>>> {
1574    let interner = DbInterner::new_with(db, env.krate);
1575    let infcx = interner.infer_ctxt().build(TypingMode::PostAnalysis);
1576    let ((ty1_with_vars, ty2_with_vars), vars) = infcx.instantiate_canonical(tys);
1577
1578    let cause = ObligationCause::new();
1579    // FIXME: Target features.
1580    let target_features = TargetFeatures::default();
1581    let mut coerce = Coerce {
1582        delegate: HirCoercionDelegate {
1583            infcx: &infcx,
1584            param_env: env.param_env,
1585            target_features: &target_features,
1586        },
1587        cause,
1588        allow_two_phase: AllowTwoPhase::No,
1589        coerce_never: true,
1590        use_lub: false,
1591    };
1592    let infer_ok = coerce.coerce(ty1_with_vars, ty2_with_vars)?;
1593    let mut ocx = ObligationCtxt::new(&infcx);
1594    let (adjustments, ty) = ocx.register_infer_ok_obligations(infer_ok);
1595    _ = ocx.try_evaluate_obligations();
1596    let (adjustments, ty) = infcx.resolve_vars_if_possible((adjustments, ty));
1597
1598    // default any type vars that weren't unified back to their original bound vars
1599    // (kind of hacky)
1600
1601    struct Resolver<'db> {
1602        interner: DbInterner<'db>,
1603        debruijn: DebruijnIndex,
1604        var_values: GenericArgs<'db>,
1605    }
1606
1607    impl<'db> TypeFolder<DbInterner<'db>> for Resolver<'db> {
1608        fn cx(&self) -> DbInterner<'db> {
1609            self.interner
1610        }
1611
1612        fn fold_binder<T>(&mut self, t: Binder<'db, T>) -> Binder<'db, T>
1613        where
1614            T: TypeFoldable<DbInterner<'db>>,
1615        {
1616            self.debruijn.shift_in(1);
1617            let result = t.super_fold_with(self);
1618            self.debruijn.shift_out(1);
1619            result
1620        }
1621
1622        fn fold_ty(&mut self, t: Ty<'db>) -> Ty<'db> {
1623            if !t.has_infer() {
1624                return t;
1625            }
1626
1627            if let TyKind::Infer(infer) = t.kind() {
1628                let var = self.var_values.iter().position(|arg| {
1629                    arg.as_type().is_some_and(|ty| match ty.kind() {
1630                        TyKind::Infer(it) => infer == it,
1631                        _ => false,
1632                    })
1633                });
1634                var.map_or_else(
1635                    || Ty::new_error(self.interner, ErrorGuaranteed),
1636                    |i| {
1637                        Ty::new_bound(
1638                            self.interner,
1639                            self.debruijn,
1640                            BoundTy { kind: BoundTyKind::Anon, var: BoundVar::from_usize(i) },
1641                        )
1642                    },
1643                )
1644            } else {
1645                t.super_fold_with(self)
1646            }
1647        }
1648
1649        fn fold_const(&mut self, c: Const<'db>) -> Const<'db> {
1650            if !c.has_infer() {
1651                return c;
1652            }
1653
1654            if let ConstKind::Infer(infer) = c.kind() {
1655                let var = self.var_values.iter().position(|arg| {
1656                    arg.as_const().is_some_and(|ty| match ty.kind() {
1657                        ConstKind::Infer(it) => infer == it,
1658                        _ => false,
1659                    })
1660                });
1661                var.map_or_else(
1662                    || Const::new_error(self.interner, ErrorGuaranteed),
1663                    |i| {
1664                        Const::new_bound(
1665                            self.interner,
1666                            self.debruijn,
1667                            BoundConst { var: BoundVar::from_usize(i) },
1668                        )
1669                    },
1670                )
1671            } else {
1672                c.super_fold_with(self)
1673            }
1674        }
1675
1676        fn fold_region(&mut self, r: Region<'db>) -> Region<'db> {
1677            if let RegionKind::ReVar(infer) = r.kind() {
1678                let var = self.var_values.iter().position(|arg| {
1679                    arg.as_region().is_some_and(|ty| match ty.kind() {
1680                        RegionKind::ReVar(it) => infer == it,
1681                        _ => false,
1682                    })
1683                });
1684                var.map_or_else(
1685                    || Region::error(self.interner),
1686                    |i| {
1687                        Region::new_bound(
1688                            self.interner,
1689                            self.debruijn,
1690                            BoundRegion {
1691                                kind: BoundRegionKind::Anon,
1692                                var: BoundVar::from_usize(i),
1693                            },
1694                        )
1695                    },
1696                )
1697            } else {
1698                r
1699            }
1700        }
1701    }
1702
1703    // FIXME: We don't fallback correctly since this is done on `InferenceContext` and we only have `InferCtxt`.
1704    let (adjustments, ty) = (adjustments, ty).fold_with(&mut Resolver {
1705        interner,
1706        debruijn: DebruijnIndex::ZERO,
1707        var_values: vars.var_values,
1708    });
1709    Ok((adjustments, ty))
1710}