1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
//! Coercion logic. Coercions are certain type conversions that can implicitly
//! happen in certain places, e.g. weakening `&mut` to `&` or deref coercions
//! like going from `&Vec<T>` to `&[T]`.
//!
//! See <https://doc.rust-lang.org/nomicon/coercions.html> and
//! `rustc_hir_analysis/check/coercion.rs`.
use std::iter;
use chalk_ir::{cast::Cast, BoundVar, Goal, Mutability, TyKind, TyVariableKind};
use hir_def::{
hir::ExprId,
lang_item::{LangItem, LangItemTarget},
};
use stdx::always;
use triomphe::Arc;
use crate::{
autoderef::{Autoderef, AutoderefKind},
db::HirDatabase,
infer::{
Adjust, Adjustment, AutoBorrow, InferOk, InferenceContext, OverloadedDeref, PointerCast,
TypeError, TypeMismatch,
},
utils::ClosureSubst,
Canonical, DomainGoal, FnAbi, FnPointer, FnSig, Guidance, InEnvironment, Interner, Lifetime,
Solution, Substitution, TraitEnvironment, Ty, TyBuilder, TyExt,
};
use super::unify::InferenceTable;
pub(crate) type CoerceResult = Result<InferOk<(Vec<Adjustment>, Ty)>, TypeError>;
/// Do not require any adjustments, i.e. coerce `x -> x`.
fn identity(_: Ty) -> Vec<Adjustment> {
vec![]
}
fn simple(kind: Adjust) -> impl FnOnce(Ty) -> Vec<Adjustment> {
move |target| vec![Adjustment { kind, target }]
}
/// This always returns `Ok(...)`.
fn success(
adj: Vec<Adjustment>,
target: Ty,
goals: Vec<InEnvironment<Goal<Interner>>>,
) -> CoerceResult {
Ok(InferOk { goals, value: (adj, target) })
}
pub(super) enum CoercionCause {
// FIXME: Make better use of this. Right now things like return and break without a value
// use it to point to themselves, causing us to report a mismatch on those expressions even
// though technically they themselves are `!`
Expr(ExprId),
}
#[derive(Clone, Debug)]
pub(super) struct CoerceMany {
expected_ty: Ty,
final_ty: Option<Ty>,
expressions: Vec<ExprId>,
}
impl CoerceMany {
pub(super) fn new(expected: Ty) -> Self {
CoerceMany { expected_ty: expected, final_ty: None, expressions: vec![] }
}
/// Returns the "expected type" with which this coercion was
/// constructed. This represents the "downward propagated" type
/// that was given to us at the start of typing whatever construct
/// we are typing (e.g., the match expression).
///
/// Typically, this is used as the expected type when
/// type-checking each of the alternative expressions whose types
/// we are trying to merge.
pub(super) fn expected_ty(&self) -> Ty {
self.expected_ty.clone()
}
/// Returns the current "merged type", representing our best-guess
/// at the LUB of the expressions we've seen so far (if any). This
/// isn't *final* until you call `self.complete()`, which will return
/// the merged type.
pub(super) fn merged_ty(&self) -> Ty {
self.final_ty.clone().unwrap_or_else(|| self.expected_ty.clone())
}
pub(super) fn complete(self, ctx: &mut InferenceContext<'_>) -> Ty {
if let Some(final_ty) = self.final_ty {
final_ty
} else {
ctx.result.standard_types.never.clone()
}
}
pub(super) fn coerce_forced_unit(
&mut self,
ctx: &mut InferenceContext<'_>,
cause: CoercionCause,
) {
self.coerce(ctx, None, &ctx.result.standard_types.unit.clone(), cause)
}
/// Merge two types from different branches, with possible coercion.
///
/// Mostly this means trying to coerce one to the other, but
/// - if we have two function types for different functions or closures, we need to
/// coerce both to function pointers;
/// - if we were concerned with lifetime subtyping, we'd need to look for a
/// least upper bound.
pub(super) fn coerce(
&mut self,
ctx: &mut InferenceContext<'_>,
expr: Option<ExprId>,
expr_ty: &Ty,
cause: CoercionCause,
) {
let expr_ty = ctx.resolve_ty_shallow(expr_ty);
self.expected_ty = ctx.resolve_ty_shallow(&self.expected_ty);
// Special case: two function types. Try to coerce both to
// pointers to have a chance at getting a match. See
// https://github.com/rust-lang/rust/blob/7b805396bf46dce972692a6846ce2ad8481c5f85/src/librustc_typeck/check/coercion.rs#L877-L916
let sig = match (self.merged_ty().kind(Interner), expr_ty.kind(Interner)) {
(TyKind::FnDef(x, _), TyKind::FnDef(y, _)) if x == y => None,
(TyKind::Closure(x, _), TyKind::Closure(y, _)) if x == y => None,
(TyKind::FnDef(..) | TyKind::Closure(..), TyKind::FnDef(..) | TyKind::Closure(..)) => {
// FIXME: we're ignoring safety here. To be more correct, if we have one FnDef and one Closure,
// we should be coercing the closure to a fn pointer of the safety of the FnDef
cov_mark::hit!(coerce_fn_reification);
let sig =
self.merged_ty().callable_sig(ctx.db).expect("FnDef without callable sig");
Some(sig)
}
_ => None,
};
if let Some(sig) = sig {
let target_ty = TyKind::Function(sig.to_fn_ptr()).intern(Interner);
let result1 = ctx.table.coerce_inner(self.merged_ty(), &target_ty, CoerceNever::Yes);
let result2 = ctx.table.coerce_inner(expr_ty.clone(), &target_ty, CoerceNever::Yes);
if let (Ok(result1), Ok(result2)) = (result1, result2) {
ctx.table.register_infer_ok(InferOk { value: (), goals: result1.goals });
for &e in &self.expressions {
ctx.write_expr_adj(e, result1.value.0.clone());
}
ctx.table.register_infer_ok(InferOk { value: (), goals: result2.goals });
if let Some(expr) = expr {
ctx.write_expr_adj(expr, result2.value.0);
self.expressions.push(expr);
}
return self.final_ty = Some(target_ty);
}
}
// It might not seem like it, but order is important here: If the expected
// type is a type variable and the new one is `!`, trying it the other
// way around first would mean we make the type variable `!`, instead of
// just marking it as possibly diverging.
if let Ok(res) = ctx.coerce(expr, &expr_ty, &self.merged_ty(), CoerceNever::Yes) {
self.final_ty = Some(res);
} else if let Ok(res) = ctx.coerce(expr, &self.merged_ty(), &expr_ty, CoerceNever::Yes) {
self.final_ty = Some(res);
} else {
match cause {
CoercionCause::Expr(id) => {
ctx.result.type_mismatches.insert(
id.into(),
TypeMismatch { expected: self.merged_ty(), actual: expr_ty.clone() },
);
}
}
cov_mark::hit!(coerce_merge_fail_fallback);
}
if let Some(expr) = expr {
self.expressions.push(expr);
}
}
}
pub fn could_coerce(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> bool {
coerce(db, env, tys).is_ok()
}
pub(crate) fn coerce(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
tys: &Canonical<(Ty, Ty)>,
) -> Result<(Vec<Adjustment>, Ty), TypeError> {
let mut table = InferenceTable::new(db, env);
let vars = table.fresh_subst(tys.binders.as_slice(Interner));
let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner);
let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner);
let (adjustments, ty) = table.coerce(&ty1_with_vars, &ty2_with_vars, CoerceNever::Yes)?;
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
let find_var = |iv| {
vars.iter(Interner).position(|v| match v.interned() {
chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(Interner),
chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(Interner),
chalk_ir::GenericArgData::Const(c) => c.inference_var(Interner),
} == Some(iv))
};
let fallback = |iv, kind, default, binder| match kind {
chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)),
chalk_ir::VariableKind::Lifetime => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)),
chalk_ir::VariableKind::Const(ty) => find_var(iv)
.map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)),
};
// FIXME also map the types in the adjustments
Ok((adjustments, table.resolve_with_fallback(ty, &fallback)))
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub(crate) enum CoerceNever {
Yes,
No,
}
impl InferenceContext<'_> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(super) fn coerce(
&mut self,
expr: Option<ExprId>,
from_ty: &Ty,
to_ty: &Ty,
// [Comment from rustc](https://github.com/rust-lang/rust/blob/4cc494bbfe9911d24f3ee521f98d5c6bb7e3ffe8/compiler/rustc_hir_typeck/src/coercion.rs#L85-L89)
// Whether we allow `NeverToAny` coercions. This is unsound if we're
// coercing a place expression without it counting as a read in the MIR.
// This is a side-effect of HIR not really having a great distinction
// between places and values.
coerce_never: CoerceNever,
) -> Result<Ty, TypeError> {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
let (adjustments, ty) = self.table.coerce(&from_ty, &to_ty, coerce_never)?;
if let Some(expr) = expr {
self.write_expr_adj(expr, adjustments);
}
Ok(ty)
}
}
impl InferenceTable<'_> {
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
pub(crate) fn coerce(
&mut self,
from_ty: &Ty,
to_ty: &Ty,
coerce_never: CoerceNever,
) -> Result<(Vec<Adjustment>, Ty), TypeError> {
let from_ty = self.resolve_ty_shallow(from_ty);
let to_ty = self.resolve_ty_shallow(to_ty);
match self.coerce_inner(from_ty, &to_ty, coerce_never) {
Ok(InferOk { value: (adjustments, ty), goals }) => {
self.register_infer_ok(InferOk { value: (), goals });
Ok((adjustments, ty))
}
Err(e) => {
// FIXME deal with error
Err(e)
}
}
}
fn coerce_inner(&mut self, from_ty: Ty, to_ty: &Ty, coerce_never: CoerceNever) -> CoerceResult {
if from_ty.is_never() {
if let TyKind::InferenceVar(tv, TyVariableKind::General) = to_ty.kind(Interner) {
self.set_diverging(*tv, true);
}
if coerce_never == CoerceNever::Yes {
// Subtle: If we are coercing from `!` to `?T`, where `?T` is an unbound
// type variable, we want `?T` to fallback to `!` if not
// otherwise constrained. An example where this arises:
//
// let _: Option<?T> = Some({ return; });
//
// here, we would coerce from `!` to `?T`.
return success(simple(Adjust::NeverToAny)(to_ty.clone()), to_ty.clone(), vec![]);
} else {
return self.unify_and(&from_ty, to_ty, identity);
}
}
// If we are coercing into a TAIT, coerce into its proxy inference var, instead.
let mut to_ty = to_ty;
let _to;
if let Some(tait_table) = &self.tait_coercion_table {
if let TyKind::OpaqueType(opaque_ty_id, _) = to_ty.kind(Interner) {
if !matches!(
from_ty.kind(Interner),
TyKind::InferenceVar(..) | TyKind::OpaqueType(..)
) {
if let Some(ty) = tait_table.get(opaque_ty_id) {
_to = ty.clone();
to_ty = &_to;
}
}
}
}
// Consider coercing the subtype to a DST
if let Ok(ret) = self.try_coerce_unsized(&from_ty, to_ty) {
return Ok(ret);
}
// Examine the supertype and consider auto-borrowing.
match to_ty.kind(Interner) {
TyKind::Raw(mt, _) => return self.coerce_ptr(from_ty, to_ty, *mt),
TyKind::Ref(mt, lt, _) => return self.coerce_ref(from_ty, to_ty, *mt, lt),
_ => {}
}
match from_ty.kind(Interner) {
TyKind::FnDef(..) => {
// Function items are coercible to any closure
// type; function pointers are not (that would
// require double indirection).
// Additionally, we permit coercion of function
// items to drop the unsafe qualifier.
self.coerce_from_fn_item(from_ty, to_ty)
}
TyKind::Function(from_fn_ptr) => {
// We permit coercion of fn pointers to drop the
// unsafe qualifier.
self.coerce_from_fn_pointer(from_ty.clone(), from_fn_ptr, to_ty)
}
TyKind::Closure(_, from_substs) => {
// Non-capturing closures are coercible to
// function pointers or unsafe function pointers.
// It cannot convert closures that require unsafe.
self.coerce_closure_to_fn(from_ty.clone(), from_substs, to_ty)
}
_ => {
// Otherwise, just use unification rules.
self.unify_and(&from_ty, to_ty, identity)
}
}
}
/// Unify two types (using sub or lub) and produce a specific coercion.
fn unify_and<F>(&mut self, t1: &Ty, t2: &Ty, f: F) -> CoerceResult
where
F: FnOnce(Ty) -> Vec<Adjustment>,
{
self.try_unify(t1, t2)
.and_then(|InferOk { goals, .. }| success(f(t1.clone()), t1.clone(), goals))
}
fn coerce_ptr(&mut self, from_ty: Ty, to_ty: &Ty, to_mt: Mutability) -> CoerceResult {
let (is_ref, from_mt, from_inner) = match from_ty.kind(Interner) {
TyKind::Ref(mt, _, ty) => (true, mt, ty),
TyKind::Raw(mt, ty) => (false, mt, ty),
_ => return self.unify_and(&from_ty, to_ty, identity),
};
coerce_mutabilities(*from_mt, to_mt)?;
// Check that the types which they point at are compatible.
let from_raw = TyKind::Raw(to_mt, from_inner.clone()).intern(Interner);
// Although references and unsafe ptrs have the same
// representation, we still register an Adjust::DerefRef so that
// regionck knows that the region for `a` must be valid here.
if is_ref {
self.unify_and(&from_raw, to_ty, |target| {
vec![
Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() },
Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(to_mt)), target },
]
})
} else if *from_mt != to_mt {
self.unify_and(
&from_raw,
to_ty,
simple(Adjust::Pointer(PointerCast::MutToConstPointer)),
)
} else {
self.unify_and(&from_raw, to_ty, identity)
}
}
/// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
/// To match `A` with `B`, autoderef will be performed,
/// calling `deref`/`deref_mut` where necessary.
fn coerce_ref(
&mut self,
from_ty: Ty,
to_ty: &Ty,
to_mt: Mutability,
to_lt: &Lifetime,
) -> CoerceResult {
let (_from_lt, from_mt) = match from_ty.kind(Interner) {
TyKind::Ref(mt, lt, _) => {
coerce_mutabilities(*mt, to_mt)?;
(lt.clone(), *mt) // clone is probably not good?
}
_ => return self.unify_and(&from_ty, to_ty, identity),
};
// NOTE: this code is mostly copied and adapted from rustc, and
// currently more complicated than necessary, carrying errors around
// etc.. This complication will become necessary when we actually track
// details of coercion errors though, so I think it's useful to leave
// the structure like it is.
let snapshot = self.snapshot();
let mut autoderef = Autoderef::new(self, from_ty.clone(), false);
let mut first_error = None;
let mut found = None;
while let Some((referent_ty, autoderefs)) = autoderef.next() {
if autoderefs == 0 {
// Don't let this pass, otherwise it would cause
// &T to autoref to &&T.
continue;
}
// At this point, we have deref'd `a` to `referent_ty`. So
// imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
// In the autoderef loop for `&'a mut Vec<T>`, we would get
// three callbacks:
//
// - `&'a mut Vec<T>` -- 0 derefs, just ignore it
// - `Vec<T>` -- 1 deref
// - `[T]` -- 2 deref
//
// At each point after the first callback, we want to
// check to see whether this would match out target type
// (`&'b mut [T]`) if we autoref'd it. We can't just
// compare the referent types, though, because we still
// have to consider the mutability. E.g., in the case
// we've been considering, we have an `&mut` reference, so
// the `T` in `[T]` needs to be unified with equality.
//
// Therefore, we construct reference types reflecting what
// the types will be after we do the final auto-ref and
// compare those. Note that this means we use the target
// mutability [1], since it may be that we are coercing
// from `&mut T` to `&U`.
let lt = to_lt; // FIXME: Involve rustc LUB and SUB flag checks
let derefd_from_ty = TyKind::Ref(to_mt, lt.clone(), referent_ty).intern(Interner);
match autoderef.table.try_unify(&derefd_from_ty, to_ty) {
Ok(result) => {
found = Some(result.map(|()| derefd_from_ty));
break;
}
Err(err) => {
if first_error.is_none() {
first_error = Some(err);
}
}
}
}
// Extract type or return an error. We return the first error
// we got, which should be from relating the "base" type
// (e.g., in example above, the failure from relating `Vec<T>`
// to the target type), since that should be the least
// confusing.
let InferOk { value: ty, goals } = match found {
Some(d) => d,
None => {
self.rollback_to(snapshot);
let err = first_error.expect("coerce_borrowed_pointer had no error");
return Err(err);
}
};
if ty == from_ty && from_mt == Mutability::Not && autoderef.step_count() == 1 {
// As a special case, if we would produce `&'a *x`, that's
// a total no-op. We end up with the type `&'a T` just as
// we started with. In that case, just skip it
// altogether. This is just an optimization.
//
// Note that for `&mut`, we DO want to reborrow --
// otherwise, this would be a move, which might be an
// error. For example `foo(self.x)` where `self` and
// `self.x` both have `&mut `type would be a move of
// `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
// which is a borrow.
always!(to_mt == Mutability::Not); // can only coerce &T -> &U
return success(vec![], ty, goals);
}
let mut adjustments = auto_deref_adjust_steps(&autoderef);
adjustments.push(Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(to_lt.clone(), to_mt)),
target: ty.clone(),
});
success(adjustments, ty, goals)
}
/// Attempts to coerce from the type of a Rust function item into a function pointer.
fn coerce_from_fn_item(&mut self, from_ty: Ty, to_ty: &Ty) -> CoerceResult {
match to_ty.kind(Interner) {
TyKind::Function(_) => {
let from_sig = from_ty.callable_sig(self.db).expect("FnDef had no sig");
// FIXME check ABI: Intrinsics are not coercible to function pointers
// FIXME Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396)
// FIXME rustc normalizes assoc types in the sig here, not sure if necessary
let from_sig = from_sig.to_fn_ptr();
let from_fn_pointer = TyKind::Function(from_sig.clone()).intern(Interner);
let ok = self.coerce_from_safe_fn(
from_fn_pointer.clone(),
&from_sig,
to_ty,
|unsafe_ty| {
vec![
Adjustment {
kind: Adjust::Pointer(PointerCast::ReifyFnPointer),
target: from_fn_pointer,
},
Adjustment {
kind: Adjust::Pointer(PointerCast::UnsafeFnPointer),
target: unsafe_ty,
},
]
},
simple(Adjust::Pointer(PointerCast::ReifyFnPointer)),
)?;
Ok(ok)
}
_ => self.unify_and(&from_ty, to_ty, identity),
}
}
fn coerce_from_fn_pointer(
&mut self,
from_ty: Ty,
from_f: &FnPointer,
to_ty: &Ty,
) -> CoerceResult {
self.coerce_from_safe_fn(
from_ty,
from_f,
to_ty,
simple(Adjust::Pointer(PointerCast::UnsafeFnPointer)),
identity,
)
}
fn coerce_from_safe_fn<F, G>(
&mut self,
from_ty: Ty,
from_fn_ptr: &FnPointer,
to_ty: &Ty,
to_unsafe: F,
normal: G,
) -> CoerceResult
where
F: FnOnce(Ty) -> Vec<Adjustment>,
G: FnOnce(Ty) -> Vec<Adjustment>,
{
if let TyKind::Function(to_fn_ptr) = to_ty.kind(Interner) {
if let (chalk_ir::Safety::Safe, chalk_ir::Safety::Unsafe) =
(from_fn_ptr.sig.safety, to_fn_ptr.sig.safety)
{
let from_unsafe =
TyKind::Function(safe_to_unsafe_fn_ty(from_fn_ptr.clone())).intern(Interner);
return self.unify_and(&from_unsafe, to_ty, to_unsafe);
}
}
self.unify_and(&from_ty, to_ty, normal)
}
/// Attempts to coerce from the type of a non-capturing closure into a
/// function pointer.
fn coerce_closure_to_fn(
&mut self,
from_ty: Ty,
from_substs: &Substitution,
to_ty: &Ty,
) -> CoerceResult {
match to_ty.kind(Interner) {
// if from_substs is non-capturing (FIXME)
TyKind::Function(fn_ty) => {
// We coerce the closure, which has fn type
// `extern "rust-call" fn((arg0,arg1,...)) -> _`
// to
// `fn(arg0,arg1,...) -> _`
// or
// `unsafe fn(arg0,arg1,...) -> _`
let safety = fn_ty.sig.safety;
let pointer_ty = coerce_closure_fn_ty(from_substs, safety);
self.unify_and(
&pointer_ty,
to_ty,
simple(Adjust::Pointer(PointerCast::ClosureFnPointer(safety))),
)
}
_ => self.unify_and(&from_ty, to_ty, identity),
}
}
/// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
///
/// See: <https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html>
fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> CoerceResult {
// These 'if' statements require some explanation.
// The `CoerceUnsized` trait is special - it is only
// possible to write `impl CoerceUnsized<B> for A` where
// A and B have 'matching' fields. This rules out the following
// two types of blanket impls:
//
// `impl<T> CoerceUnsized<T> for SomeType`
// `impl<T> CoerceUnsized<SomeType> for T`
//
// Both of these trigger a special `CoerceUnsized`-related error (E0376)
//
// We can take advantage of this fact to avoid performing unnecessary work.
// If either `source` or `target` is a type variable, then any applicable impl
// would need to be generic over the self-type (`impl<T> CoerceUnsized<SomeType> for T`)
// or generic over the `CoerceUnsized` type parameter (`impl<T> CoerceUnsized<T> for
// SomeType`).
//
// However, these are exactly the kinds of impls which are forbidden by
// the compiler! Therefore, we can be sure that coercion will always fail
// when either the source or target type is a type variable. This allows us
// to skip performing any trait selection, and immediately bail out.
if from_ty.is_ty_var() {
return Err(TypeError);
}
if to_ty.is_ty_var() {
return Err(TypeError);
}
// Handle reborrows before trying to solve `Source: CoerceUnsized<Target>`.
let reborrow = match (from_ty.kind(Interner), to_ty.kind(Interner)) {
(TyKind::Ref(from_mt, _, from_inner), &TyKind::Ref(to_mt, _, _)) => {
coerce_mutabilities(*from_mt, to_mt)?;
let lt = self.new_lifetime_var();
Some((
Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() },
Adjustment {
kind: Adjust::Borrow(AutoBorrow::Ref(lt.clone(), to_mt)),
target: TyKind::Ref(to_mt, lt, from_inner.clone()).intern(Interner),
},
))
}
(TyKind::Ref(from_mt, _, from_inner), &TyKind::Raw(to_mt, _)) => {
coerce_mutabilities(*from_mt, to_mt)?;
Some((
Adjustment { kind: Adjust::Deref(None), target: from_inner.clone() },
Adjustment {
kind: Adjust::Borrow(AutoBorrow::RawPtr(to_mt)),
target: TyKind::Raw(to_mt, from_inner.clone()).intern(Interner),
},
))
}
_ => None,
};
let coerce_from =
reborrow.as_ref().map_or_else(|| from_ty.clone(), |(_, adj)| adj.target.clone());
let krate = self.trait_env.krate;
let coerce_unsized_trait = match self.db.lang_item(krate, LangItem::CoerceUnsized) {
Some(LangItemTarget::Trait(trait_)) => trait_,
_ => return Err(TypeError),
};
let coerce_unsized_tref = {
let b = TyBuilder::trait_ref(self.db, coerce_unsized_trait);
if b.remaining() != 2 {
// The CoerceUnsized trait should have two generic params: Self and T.
return Err(TypeError);
}
b.push(coerce_from).push(to_ty.clone()).build()
};
let goal: InEnvironment<DomainGoal> =
InEnvironment::new(&self.trait_env.env, coerce_unsized_tref.cast(Interner));
let canonicalized = self.canonicalize_with_free_vars(goal);
// FIXME: rustc's coerce_unsized is more specialized -- it only tries to
// solve `CoerceUnsized` and `Unsize` goals at this point and leaves the
// rest for later. Also, there's some logic about sized type variables.
// Need to find out in what cases this is necessary
let solution = self
.db
.trait_solve(krate, self.trait_env.block, canonicalized.value.clone().cast(Interner))
.ok_or(TypeError)?;
match solution {
Solution::Unique(v) => {
canonicalized.apply_solution(
self,
Canonical {
binders: v.binders,
// FIXME handle constraints
value: v.value.subst,
},
);
}
Solution::Ambig(Guidance::Definite(subst)) => {
// FIXME need to record an obligation here
canonicalized.apply_solution(self, subst)
}
// FIXME actually we maybe should also accept unknown guidance here
_ => return Err(TypeError),
};
let unsize =
Adjustment { kind: Adjust::Pointer(PointerCast::Unsize), target: to_ty.clone() };
let adjustments = match reborrow {
None => vec![unsize],
Some((deref, autoref)) => vec![deref, autoref, unsize],
};
success(adjustments, to_ty.clone(), vec![])
}
}
fn coerce_closure_fn_ty(closure_substs: &Substitution, safety: chalk_ir::Safety) -> Ty {
let closure_sig = ClosureSubst(closure_substs).sig_ty().clone();
match closure_sig.kind(Interner) {
TyKind::Function(fn_ty) => TyKind::Function(FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety, abi: FnAbi::Rust, variadic: fn_ty.sig.variadic },
substitution: fn_ty.substitution.clone(),
})
.intern(Interner),
_ => TyKind::Error.intern(Interner),
}
}
fn safe_to_unsafe_fn_ty(fn_ty: FnPointer) -> FnPointer {
FnPointer {
num_binders: fn_ty.num_binders,
sig: FnSig { safety: chalk_ir::Safety::Unsafe, ..fn_ty.sig },
substitution: fn_ty.substitution,
}
}
fn coerce_mutabilities(from: Mutability, to: Mutability) -> Result<(), TypeError> {
match (from, to) {
(Mutability::Mut, Mutability::Mut | Mutability::Not)
| (Mutability::Not, Mutability::Not) => Ok(()),
(Mutability::Not, Mutability::Mut) => Err(TypeError),
}
}
pub(super) fn auto_deref_adjust_steps(autoderef: &Autoderef<'_, '_>) -> Vec<Adjustment> {
let steps = autoderef.steps();
let targets =
steps.iter().skip(1).map(|(_, ty)| ty.clone()).chain(iter::once(autoderef.final_ty()));
steps
.iter()
.map(|(kind, _source)| match kind {
// We do not know what kind of deref we require at this point yet
AutoderefKind::Overloaded => Some(OverloadedDeref(None)),
AutoderefKind::Builtin => None,
})
.zip(targets)
.map(|(autoderef, target)| Adjustment { kind: Adjust::Deref(autoderef), target })
.collect()
}