stdx/
anymap.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
//! This file is a port of only the necessary features from <https://github.com/chris-morgan/anymap> version 1.0.0-beta.2 for use within rust-analyzer.
//! Copyright © 2014–2022 Chris Morgan.
//! COPYING: <https://github.com/chris-morgan/anymap/blob/master/COPYING>
//! Note that the license is changed from Blue Oak Model 1.0.0 or MIT or Apache-2.0 to MIT OR Apache-2.0
//!
//! This implementation provides a safe and convenient store for one value of each type.
//!
//! Your starting point is [`Map`]. It has an example.
//!
//! # Cargo features
//!
//! This implementation has two independent features, each of which provides an implementation providing
//! types `Map`, `AnyMap`, `OccupiedEntry`, `VacantEntry`, `Entry` and `RawMap`:
//!
//! - **std** (default, *enabled* in this build):
//!   an implementation using `std::collections::hash_map`, placed in the crate root
//!   (e.g. `anymap::AnyMap`).

#![warn(missing_docs, unused_results)]

use core::hash::Hasher;

/// A hasher designed to eke a little more speed out, given `TypeId`’s known characteristics.
///
/// Specifically, this is a no-op hasher that expects to be fed a u64’s worth of
/// randomly-distributed bits. It works well for `TypeId` (eliminating start-up time, so that my
/// get_missing benchmark is ~30ns rather than ~900ns, and being a good deal faster after that, so
/// that my insert_and_get_on_260_types benchmark is ~12μs instead of ~21.5μs), but will
/// panic in debug mode and always emit zeros in release mode for any other sorts of inputs, so
/// yeah, don’t use it! 😀
#[derive(Default)]
pub struct TypeIdHasher {
    value: u64,
}

impl Hasher for TypeIdHasher {
    #[inline]
    fn write(&mut self, bytes: &[u8]) {
        // This expects to receive exactly one 64-bit value, and there’s no realistic chance of
        // that changing, but I don’t want to depend on something that isn’t expressly part of the
        // contract for safety. But I’m OK with release builds putting everything in one bucket
        // if it *did* change (and debug builds panicking).
        debug_assert_eq!(bytes.len(), 8);
        let _ = bytes.try_into().map(|array| self.value = u64::from_ne_bytes(array));
    }

    #[inline]
    fn finish(&self) -> u64 {
        self.value
    }
}

use core::any::{Any, TypeId};
use core::hash::BuildHasherDefault;
use core::marker::PhantomData;

use ::std::collections::hash_map;

/// Raw access to the underlying `HashMap`.
///
/// This alias is provided for convenience because of the ugly third generic parameter.
#[allow(clippy::disallowed_types)] // Uses a custom hasher
pub type RawMap<A> = hash_map::HashMap<TypeId, Box<A>, BuildHasherDefault<TypeIdHasher>>;

/// A collection containing zero or one values for any given type and allowing convenient,
/// type-safe access to those values.
///
/// The type parameter `A` allows you to use a different value type; normally you will want
/// it to be `core::any::Any` (also known as `std::any::Any`), but there are other choices:
///
/// - You can add on `+ Send` or `+ Send + Sync` (e.g. `Map<dyn Any + Send>`) to add those
///   auto traits.
///
/// Cumulatively, there are thus six forms of map:
///
/// - <code>[Map]&lt;dyn [core::any::Any]&gt;</code>,
///   also spelled [`AnyMap`] for convenience.
/// - <code>[Map]&lt;dyn [core::any::Any] + Send&gt;</code>
/// - <code>[Map]&lt;dyn [core::any::Any] + Send + Sync&gt;</code>
///
/// ## Example
///
/// (Here using the [`AnyMap`] convenience alias; the first line could use
/// <code>[anymap::Map][Map]::&lt;[core::any::Any]&gt;::new()</code> instead if desired.)
///
/// ```rust
#[doc = "let mut data = anymap::AnyMap::new();"]
/// assert_eq!(data.get(), None::<&i32>);
/// ```
///
/// Values containing non-static references are not permitted.
#[derive(Debug)]
pub struct Map<A: ?Sized + Downcast = dyn Any> {
    raw: RawMap<A>,
}

/// The most common type of `Map`: just using `Any`; <code>[Map]&lt;dyn [Any]&gt;</code>.
///
/// Why is this a separate type alias rather than a default value for `Map<A>`?
/// `Map::new()` doesn’t seem to be happy to infer that it should go with the default
/// value. It’s a bit sad, really. Ah well, I guess this approach will do.
pub type AnyMap = Map<dyn Any>;
impl<A: ?Sized + Downcast> Default for Map<A> {
    #[inline]
    fn default() -> Map<A> {
        Map::new()
    }
}

impl<A: ?Sized + Downcast> Map<A> {
    /// Create an empty collection.
    #[inline]
    pub fn new() -> Map<A> {
        Map { raw: RawMap::with_hasher(Default::default()) }
    }

    /// Returns a reference to the value stored in the collection for the type `T`,
    /// if it exists.
    #[inline]
    pub fn get<T: IntoBox<A>>(&self) -> Option<&T> {
        self.raw.get(&TypeId::of::<T>()).map(|any| unsafe { any.downcast_ref_unchecked::<T>() })
    }

    /// Gets the entry for the given type in the collection for in-place manipulation
    #[inline]
    pub fn entry<T: IntoBox<A>>(&mut self) -> Entry<'_, A, T> {
        match self.raw.entry(TypeId::of::<T>()) {
            hash_map::Entry::Occupied(e) => {
                Entry::Occupied(OccupiedEntry { inner: e, type_: PhantomData })
            }
            hash_map::Entry::Vacant(e) => {
                Entry::Vacant(VacantEntry { inner: e, type_: PhantomData })
            }
        }
    }
}

/// A view into a single occupied location in an `Map`.
pub struct OccupiedEntry<'a, A: ?Sized + Downcast, V: 'a> {
    inner: hash_map::OccupiedEntry<'a, TypeId, Box<A>>,
    type_: PhantomData<V>,
}

/// A view into a single empty location in an `Map`.
pub struct VacantEntry<'a, A: ?Sized + Downcast, V: 'a> {
    inner: hash_map::VacantEntry<'a, TypeId, Box<A>>,
    type_: PhantomData<V>,
}

/// A view into a single location in an `Map`, which may be vacant or occupied.
pub enum Entry<'a, A: ?Sized + Downcast, V> {
    /// An occupied Entry
    Occupied(OccupiedEntry<'a, A, V>),
    /// A vacant Entry
    Vacant(VacantEntry<'a, A, V>),
}

impl<'a, A: ?Sized + Downcast, V: IntoBox<A>> Entry<'a, A, V> {
    /// Ensures a value is in the entry by inserting the result of the default function if
    /// empty, and returns a mutable reference to the value in the entry.
    #[inline]
    pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
        match self {
            Entry::Occupied(inner) => inner.into_mut(),
            Entry::Vacant(inner) => inner.insert(default()),
        }
    }
}

impl<'a, A: ?Sized + Downcast, V: IntoBox<A>> OccupiedEntry<'a, A, V> {
    /// Converts the OccupiedEntry into a mutable reference to the value in the entry
    /// with a lifetime bound to the collection itself
    #[inline]
    pub fn into_mut(self) -> &'a mut V {
        unsafe { self.inner.into_mut().downcast_mut_unchecked() }
    }
}

impl<'a, A: ?Sized + Downcast, V: IntoBox<A>> VacantEntry<'a, A, V> {
    /// Sets the value of the entry with the VacantEntry's key,
    /// and returns a mutable reference to it
    #[inline]
    pub fn insert(self, value: V) -> &'a mut V {
        unsafe { self.inner.insert(value.into_box()).downcast_mut_unchecked() }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_varieties() {
        fn assert_send<T: Send>() {}
        fn assert_sync<T: Sync>() {}
        fn assert_debug<T: ::core::fmt::Debug>() {}
        assert_send::<Map<dyn Any + Send>>();
        assert_send::<Map<dyn Any + Send + Sync>>();
        assert_sync::<Map<dyn Any + Send + Sync>>();
        assert_debug::<Map<dyn Any>>();
        assert_debug::<Map<dyn Any + Send>>();
        assert_debug::<Map<dyn Any + Send + Sync>>();
    }

    #[test]
    fn type_id_hasher() {
        use core::any::TypeId;
        use core::hash::Hash;
        fn verify_hashing_with(type_id: TypeId) {
            let mut hasher = TypeIdHasher::default();
            type_id.hash(&mut hasher);
            // SAFETY: u64 is valid for all bit patterns.
            let _ = hasher.finish();
        }
        // Pick a variety of types, just to demonstrate it’s all sane. Normal, zero-sized, unsized, &c.
        verify_hashing_with(TypeId::of::<usize>());
        verify_hashing_with(TypeId::of::<()>());
        verify_hashing_with(TypeId::of::<str>());
        verify_hashing_with(TypeId::of::<&str>());
        verify_hashing_with(TypeId::of::<Vec<u8>>());
    }
}

/// Methods for downcasting from an `Any`-like trait object.
///
/// This should only be implemented on trait objects for subtraits of `Any`, though you can
/// implement it for other types and it’ll work fine, so long as your implementation is correct.
pub trait Downcast {
    /// Gets the `TypeId` of `self`.
    fn type_id(&self) -> TypeId;

    // Note the bound through these downcast methods is 'static, rather than the inexpressible
    // concept of Self-but-as-a-trait (where Self is `dyn Trait`). This is sufficient, exceeding
    // TypeId’s requirements. Sure, you *can* do CloneAny.downcast_unchecked::<NotClone>() and the
    // type system won’t protect you, but that doesn’t introduce any unsafety: the method is
    // already unsafe because you can specify the wrong type, and if this were exposing safe
    // downcasting, CloneAny.downcast::<NotClone>() would just return an error, which is just as
    // correct.
    //
    // Now in theory we could also add T: ?Sized, but that doesn’t play nicely with the common
    // implementation, so I’m doing without it.

    /// Downcast from `&Any` to `&T`, without checking the type matches.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `T` matches the trait object, on pain of *undefined behaviour*.
    unsafe fn downcast_ref_unchecked<T: 'static>(&self) -> &T;

    /// Downcast from `&mut Any` to `&mut T`, without checking the type matches.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `T` matches the trait object, on pain of *undefined behaviour*.
    unsafe fn downcast_mut_unchecked<T: 'static>(&mut self) -> &mut T;
}

/// A trait for the conversion of an object into a boxed trait object.
pub trait IntoBox<A: ?Sized + Downcast>: Any {
    /// Convert self into the appropriate boxed form.
    fn into_box(self) -> Box<A>;
}

macro_rules! implement {
    ($any_trait:ident $(+ $auto_traits:ident)*) => {
        impl Downcast for dyn $any_trait $(+ $auto_traits)* {
            #[inline]
            fn type_id(&self) -> TypeId {
                self.type_id()
            }

            #[inline]
            unsafe fn downcast_ref_unchecked<T: 'static>(&self) -> &T {
                unsafe { &*(self as *const Self as *const T) }
            }

            #[inline]
            unsafe fn downcast_mut_unchecked<T: 'static>(&mut self) -> &mut T {
                unsafe { &mut *(self as *mut Self as *mut T) }
            }
        }

        impl<T: $any_trait $(+ $auto_traits)*> IntoBox<dyn $any_trait $(+ $auto_traits)*> for T {
            #[inline]
            fn into_box(self) -> Box<dyn $any_trait $(+ $auto_traits)*> {
                Box::new(self)
            }
        }
    }
}

implement!(Any);
implement!(Any + Send);
implement!(Any + Send + Sync);