mbe/expander/matcher.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
//! An NFA-based parser, which is porting from rustc mbe parsing code
//!
//! See <https://github.com/rust-lang/rust/blob/70b18bc2cbac4712020019f5bf57c00905373205/compiler/rustc_expand/src/mbe/macro_parser.rs>
//! Here is a quick intro to how the parser works, copied from rustc:
//!
//! A 'position' is a dot in the middle of a matcher, usually represented as a
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of threads consistent with the current position in the input string: `cur_items`.
//!
//! As it processes them, it fills up `eof_items` with threads that would be valid if
//! the macro invocation is now over, `bb_items` with threads that are waiting on
//! a Rust non-terminal like `$e:expr`, and `next_items` with threads that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. The rules for moving the · without
//! consuming any input are called epsilon transitions. It only advances or calls
//! out to the real Rust parser when no `cur_items` threads remain.
//!
//! Example:
//!
//! ```text, ignore
//! Start parsing a a a a b against [· a $( a )* a b].
//!
//! Remaining input: a a a a b
//! next: [· a $( a )* a b]
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a a b
//! cur: [a · $( a )* a b]
//! Descend/Skip (first item).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an a. - - -
//!
//! Remaining input: a a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: a b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an a. - - - (this looks exactly like the last step)
//!
//! Remaining input: b
//! cur: [a $( a · )* a b] [a $( a )* a · b]
//! Follow epsilon transition: Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over a b. - - -
//!
//! Remaining input: ''
//! eof: [a $( a )* a b ·]
//! ```
use std::{rc::Rc, sync::Arc};
use intern::{sym, Symbol};
use smallvec::{smallvec, SmallVec};
use span::{Edition, Span};
use tt::{iter::TtIter, DelimSpan};
use crate::{
expander::{Binding, Bindings, ExpandResult, Fragment},
expect_fragment,
parser::{ExprKind, MetaVarKind, Op, RepeatKind, Separator},
ExpandError, ExpandErrorKind, MetaTemplate, ValueResult,
};
impl Bindings {
fn push_optional(&mut self, name: Symbol) {
self.inner.insert(name, Binding::Fragment(Fragment::Empty));
}
fn push_empty(&mut self, name: Symbol) {
self.inner.insert(name, Binding::Empty);
}
fn bindings(&self) -> impl Iterator<Item = &Binding> {
self.inner.values()
}
}
#[derive(Clone, Default, Debug, PartialEq, Eq)]
pub(super) struct Match {
pub(super) bindings: Bindings,
/// We currently just keep the first error and count the rest to compare matches.
pub(super) err: Option<ExpandError>,
pub(super) err_count: usize,
/// How many top-level token trees were left to match.
pub(super) unmatched_tts: usize,
/// The number of bound variables
pub(super) bound_count: usize,
}
impl Match {
fn add_err(&mut self, err: ExpandError) {
let prev_err = self.err.take();
self.err = prev_err.or(Some(err));
self.err_count += 1;
}
}
/// Matching errors are added to the `Match`.
pub(super) fn match_(pattern: &MetaTemplate, input: &tt::Subtree<Span>, edition: Edition) -> Match {
let mut res = match_loop(pattern, input, edition);
res.bound_count = count(res.bindings.bindings());
return res;
fn count<'a>(bindings: impl Iterator<Item = &'a Binding>) -> usize {
bindings
.map(|it| match it {
Binding::Fragment(_) => 1,
Binding::Empty => 1,
Binding::Missing(_) => 1,
Binding::Nested(it) => count(it.iter()),
})
.sum()
}
}
#[derive(Debug, Clone)]
enum BindingKind {
Empty(Symbol),
Optional(Symbol),
Fragment(Symbol, Fragment),
Missing(Symbol, MetaVarKind),
Nested(usize, usize),
}
#[derive(Debug, Clone)]
struct BindingsIdx(usize, usize);
#[derive(Debug, Clone)]
enum LinkNode<T> {
Node(T),
Parent { idx: usize, len: usize },
}
#[derive(Default)]
struct BindingsBuilder {
nodes: Vec<Vec<LinkNode<Rc<BindingKind>>>>,
nested: Vec<Vec<LinkNode<usize>>>,
}
impl BindingsBuilder {
fn alloc(&mut self) -> BindingsIdx {
let idx = self.nodes.len();
self.nodes.push(Vec::new());
let nidx = self.nested.len();
self.nested.push(Vec::new());
BindingsIdx(idx, nidx)
}
fn copy(&mut self, bindings: &BindingsIdx) -> BindingsIdx {
let idx = copy_parent(bindings.0, &mut self.nodes);
let nidx = copy_parent(bindings.1, &mut self.nested);
return BindingsIdx(idx, nidx);
fn copy_parent<T>(idx: usize, target: &mut Vec<Vec<LinkNode<T>>>) -> usize
where
T: Clone,
{
let new_idx = target.len();
let len = target[idx].len();
if len < 4 {
target.push(target[idx].clone())
} else {
target.push(vec![LinkNode::Parent { idx, len }]);
}
new_idx
}
}
fn push_empty(&mut self, idx: &mut BindingsIdx, var: &Symbol) {
self.nodes[idx.0].push(LinkNode::Node(Rc::new(BindingKind::Empty(var.clone()))));
}
fn push_optional(&mut self, idx: &mut BindingsIdx, var: &Symbol) {
self.nodes[idx.0].push(LinkNode::Node(Rc::new(BindingKind::Optional(var.clone()))));
}
fn push_fragment(&mut self, idx: &mut BindingsIdx, var: &Symbol, fragment: Fragment) {
self.nodes[idx.0]
.push(LinkNode::Node(Rc::new(BindingKind::Fragment(var.clone(), fragment))));
}
fn push_missing(&mut self, idx: &mut BindingsIdx, var: &Symbol, kind: MetaVarKind) {
self.nodes[idx.0].push(LinkNode::Node(Rc::new(BindingKind::Missing(var.clone(), kind))));
}
fn push_nested(&mut self, parent: &mut BindingsIdx, child: &BindingsIdx) {
let BindingsIdx(idx, nidx) = self.copy(child);
self.nodes[parent.0].push(LinkNode::Node(Rc::new(BindingKind::Nested(idx, nidx))));
}
fn push_default(&mut self, idx: &mut BindingsIdx) {
self.nested[idx.1].push(LinkNode::Node(idx.0));
let new_idx = self.nodes.len();
self.nodes.push(Vec::new());
idx.0 = new_idx;
}
fn build(self, idx: &BindingsIdx) -> Bindings {
self.build_inner(&self.nodes[idx.0])
}
fn build_inner(&self, link_nodes: &[LinkNode<Rc<BindingKind>>]) -> Bindings {
let mut bindings = Bindings::default();
let mut nodes = Vec::new();
self.collect_nodes(link_nodes, &mut nodes);
for cmd in nodes {
match cmd {
BindingKind::Empty(name) => {
bindings.push_empty(name.clone());
}
BindingKind::Optional(name) => {
bindings.push_optional(name.clone());
}
BindingKind::Fragment(name, fragment) => {
bindings.inner.insert(name.clone(), Binding::Fragment(fragment.clone()));
}
BindingKind::Missing(name, kind) => {
bindings.inner.insert(name.clone(), Binding::Missing(*kind));
}
BindingKind::Nested(idx, nested_idx) => {
let mut nested_nodes = Vec::new();
self.collect_nested(*idx, *nested_idx, &mut nested_nodes);
for (idx, iter) in nested_nodes.into_iter().enumerate() {
for (key, value) in &iter.inner {
let bindings = bindings
.inner
.entry(key.clone())
.or_insert_with(|| Binding::Nested(Vec::new()));
if let Binding::Nested(it) = bindings {
// insert empty nested bindings before this one
while it.len() < idx {
it.push(Binding::Nested(Vec::new()));
}
it.push(value.clone());
}
}
}
}
}
}
bindings
}
fn collect_nested_ref<'a>(
&'a self,
id: usize,
len: usize,
nested_refs: &mut Vec<&'a [LinkNode<Rc<BindingKind>>]>,
) {
self.nested[id].iter().take(len).for_each(|it| match it {
LinkNode::Node(id) => nested_refs.push(&self.nodes[*id]),
LinkNode::Parent { idx, len } => self.collect_nested_ref(*idx, *len, nested_refs),
});
}
fn collect_nested(&self, idx: usize, nested_idx: usize, nested: &mut Vec<Bindings>) {
let last = &self.nodes[idx];
let mut nested_refs: Vec<&[_]> = Vec::new();
self.nested[nested_idx].iter().for_each(|it| match *it {
LinkNode::Node(idx) => nested_refs.push(&self.nodes[idx]),
LinkNode::Parent { idx, len } => self.collect_nested_ref(idx, len, &mut nested_refs),
});
nested_refs.push(last);
nested.extend(nested_refs.into_iter().map(|iter| self.build_inner(iter)));
}
fn collect_nodes_ref<'a>(&'a self, id: usize, len: usize, nodes: &mut Vec<&'a BindingKind>) {
self.nodes[id].iter().take(len).for_each(|it| match it {
LinkNode::Node(it) => nodes.push(it),
LinkNode::Parent { idx, len } => self.collect_nodes_ref(*idx, *len, nodes),
});
}
fn collect_nodes<'a>(
&'a self,
link_nodes: &'a [LinkNode<Rc<BindingKind>>],
nodes: &mut Vec<&'a BindingKind>,
) {
link_nodes.iter().for_each(|it| match it {
LinkNode::Node(it) => nodes.push(it),
LinkNode::Parent { idx, len } => self.collect_nodes_ref(*idx, *len, nodes),
});
}
}
#[derive(Debug, Clone)]
struct MatchState<'t> {
/// The position of the "dot" in this matcher
dot: OpDelimitedIter<'t>,
/// Token subtree stack
/// When matching against matchers with nested delimited submatchers (e.g., `pat ( pat ( .. )
/// pat ) pat`), we need to keep track of the matchers we are descending into. This stack does
/// that where the bottom of the stack is the outermost matcher.
stack: SmallVec<[OpDelimitedIter<'t>; 4]>,
/// The "parent" matcher position if we are in a repetition. That is, the matcher position just
/// before we enter the repetition.
up: Option<Box<MatchState<'t>>>,
/// The separator if we are in a repetition.
sep: Option<Arc<Separator>>,
/// The KleeneOp of this sequence if we are in a repetition.
sep_kind: Option<RepeatKind>,
/// Whether we already matched separator token.
sep_matched: bool,
/// Matched meta variables bindings
bindings: BindingsIdx,
/// Cached result of meta variable parsing
meta_result: Option<(TtIter<'t, Span>, ExpandResult<Option<Fragment>>)>,
/// Is error occurred in this state, will `poised` to "parent"
is_error: bool,
}
/// Process the matcher positions of `cur_items` until it is empty. In the process, this will
/// produce more items in `next_items`, `eof_items`, and `bb_items`.
///
/// For more info about the how this happens, see the module-level doc comments and the inline
/// comments of this function.
///
/// # Parameters
///
/// - `src`: the current token of the parser.
/// - `stack`: the "parent" frames of the token tree
/// - `res`: the match result to store errors
/// - `cur_items`: the set of current items to be processed. This should be empty by the end of a
/// successful execution of this function.
/// - `next_items`: the set of newly generated items. These are used to replenish `cur_items` in
/// the function `parse`.
/// - `eof_items`: the set of items that would be valid if this was the EOF.
/// - `bb_items`: the set of items that are waiting for the black-box parser.
/// - `error_items`: the set of items in errors, used for error-resilient parsing
#[inline]
fn match_loop_inner<'t>(
src: TtIter<'t, Span>,
stack: &[TtIter<'t, Span>],
res: &mut Match,
bindings_builder: &mut BindingsBuilder,
cur_items: &mut SmallVec<[MatchState<'t>; 1]>,
bb_items: &mut SmallVec<[MatchState<'t>; 1]>,
next_items: &mut Vec<MatchState<'t>>,
eof_items: &mut SmallVec<[MatchState<'t>; 1]>,
error_items: &mut SmallVec<[MatchState<'t>; 1]>,
delim_span: tt::DelimSpan<Span>,
edition: Edition,
) {
macro_rules! try_push {
($items: expr, $it:expr) => {
if $it.is_error {
error_items.push($it);
} else {
$items.push($it);
}
};
}
while let Some(mut item) = cur_items.pop() {
while item.dot.is_eof() {
match item.stack.pop() {
Some(frame) => {
item.dot = frame;
item.dot.next();
}
None => break,
}
}
let op = match item.dot.peek() {
None => {
// We are at or past the end of the matcher of `item`.
if let Some(up) = &item.up {
if !item.sep_matched {
// Get the `up` matcher
let mut new_pos = (**up).clone();
new_pos.bindings = bindings_builder.copy(&new_pos.bindings);
// Add matches from this repetition to the `matches` of `up`
bindings_builder.push_nested(&mut new_pos.bindings, &item.bindings);
// Move the "dot" past the repetition in `up`
new_pos.dot.next();
new_pos.is_error = new_pos.is_error || item.is_error;
cur_items.push(new_pos);
}
// Check if we need a separator.
if item.sep.is_some() && !item.sep_matched {
let sep = item.sep.as_ref().unwrap();
let mut fork = src.clone();
if expect_separator(&mut fork, sep) {
// HACK: here we use `meta_result` to pass `TtIter` back to caller because
// it might have been advanced multiple times. `ValueResult` is
// insignificant.
item.meta_result = Some((fork, ValueResult::ok(None)));
item.dot.next();
// item.sep_parsed = Some(sep_len);
item.sep_matched = true;
try_push!(next_items, item);
}
}
// We don't need a separator. Move the "dot" back to the beginning of the matcher
// and try to match again UNLESS we are only allowed to have _one_ repetition.
else if item.sep_kind != Some(RepeatKind::ZeroOrOne) {
item.dot = item.dot.reset();
item.sep_matched = false;
bindings_builder.push_default(&mut item.bindings);
cur_items.push(item);
}
} else {
// If we are not in a repetition, then being at the end of a matcher means that we have
// reached the potential end of the input.
try_push!(eof_items, item);
}
continue;
}
Some(it) => it,
};
// We are in the middle of a matcher.
match op {
OpDelimited::Op(Op::Repeat { tokens, kind, separator }) => {
if matches!(kind, RepeatKind::ZeroOrMore | RepeatKind::ZeroOrOne) {
let mut new_item = item.clone();
new_item.bindings = bindings_builder.copy(&new_item.bindings);
new_item.dot.next();
collect_vars(
&mut |s| {
bindings_builder.push_empty(&mut new_item.bindings, &s);
},
tokens,
);
cur_items.push(new_item);
}
cur_items.push(MatchState {
dot: tokens.iter_delimited(delim_span),
stack: Default::default(),
up: Some(Box::new(item)),
sep: separator.clone(),
sep_kind: Some(*kind),
sep_matched: false,
bindings: bindings_builder.alloc(),
meta_result: None,
is_error: false,
})
}
OpDelimited::Op(Op::Subtree { tokens, delimiter }) => {
if let Ok(subtree) = src.clone().expect_subtree() {
if subtree.delimiter.kind == delimiter.kind {
item.stack.push(item.dot);
item.dot = tokens.iter_delimited_with(*delimiter);
cur_items.push(item);
}
}
}
OpDelimited::Op(Op::Var { kind, name, .. }) => {
if let &Some(kind) = kind {
let mut fork = src.clone();
let match_res = match_meta_var(kind, &mut fork, delim_span, edition);
match match_res.err {
None => {
// Some meta variables are optional (e.g. vis)
if match_res.value.is_some() {
item.meta_result = Some((fork, match_res));
try_push!(bb_items, item);
} else {
bindings_builder.push_optional(&mut item.bindings, name);
item.dot.next();
cur_items.push(item);
}
}
Some(err) => {
res.add_err(err);
match match_res.value {
Some(fragment) => bindings_builder.push_fragment(
&mut item.bindings,
name,
fragment,
),
None => {
bindings_builder.push_missing(&mut item.bindings, name, kind)
}
}
item.is_error = true;
error_items.push(item);
}
}
}
}
OpDelimited::Op(Op::Literal(lhs)) => {
if let Ok(rhs) = src.clone().expect_leaf() {
if matches!(rhs, tt::Leaf::Literal(it) if it.symbol == lhs.symbol) {
item.dot.next();
} else {
res.add_err(ExpandError::new(
*rhs.span(),
ExpandErrorKind::UnexpectedToken,
));
item.is_error = true;
}
} else {
res.add_err(ExpandError::binding_error(
src.clone().next().map_or(delim_span.close, |it| it.first_span()),
format!("expected literal: `{lhs}`"),
));
item.is_error = true;
}
try_push!(next_items, item);
}
OpDelimited::Op(Op::Ident(lhs)) => {
if let Ok(rhs) = src.clone().expect_leaf() {
if matches!(rhs, tt::Leaf::Ident(it) if it.sym == lhs.sym) {
item.dot.next();
} else {
res.add_err(ExpandError::new(
*rhs.span(),
ExpandErrorKind::UnexpectedToken,
));
item.is_error = true;
}
} else {
res.add_err(ExpandError::binding_error(
src.clone().next().map_or(delim_span.close, |it| it.first_span()),
format!("expected ident: `{lhs}`"),
));
item.is_error = true;
}
try_push!(next_items, item);
}
OpDelimited::Op(Op::Punct(lhs)) => {
let mut fork = src.clone();
let error = if let Ok(rhs) = fork.expect_glued_punct() {
let first_is_single_quote = rhs[0].char == '\'';
let lhs = lhs.iter().map(|it| it.char);
let rhs_ = rhs.iter().map(|it| it.char);
if lhs.clone().eq(rhs_) {
// HACK: here we use `meta_result` to pass `TtIter` back to caller because
// it might have been advanced multiple times. `ValueResult` is
// insignificant.
item.meta_result = Some((fork, ValueResult::ok(None)));
item.dot.next();
next_items.push(item);
continue;
}
if first_is_single_quote {
// If the first punct token is a single quote, that's a part of a lifetime
// ident, not a punct.
ExpandError::new(
rhs.get(1).map_or(rhs[0].span, |it| it.span),
ExpandErrorKind::UnexpectedToken,
)
} else {
let lhs = lhs.collect::<String>();
ExpandError::binding_error(rhs[0].span, format!("expected punct: `{lhs}`"))
}
} else {
ExpandError::new(
src.clone().next().map_or(delim_span.close, |it| it.first_span()),
ExpandErrorKind::UnexpectedToken,
)
};
res.add_err(error);
item.is_error = true;
error_items.push(item);
}
OpDelimited::Op(
Op::Ignore { .. }
| Op::Index { .. }
| Op::Count { .. }
| Op::Len { .. }
| Op::Concat { .. },
) => {
stdx::never!("metavariable expression in lhs found");
}
OpDelimited::Open => {
if matches!(src.peek_n(0), Some(tt::TokenTree::Subtree(..))) {
item.dot.next();
try_push!(next_items, item);
}
}
OpDelimited::Close => {
let is_delim_closed = src.peek_n(0).is_none() && !stack.is_empty();
if is_delim_closed {
item.dot.next();
try_push!(next_items, item);
}
}
}
}
}
fn match_loop(pattern: &MetaTemplate, src: &tt::Subtree<Span>, edition: Edition) -> Match {
let span = src.delimiter.delim_span();
let mut src = TtIter::new(src);
let mut stack: SmallVec<[TtIter<'_, Span>; 1]> = SmallVec::new();
let mut res = Match::default();
let mut error_recover_item = None;
let mut bindings_builder = BindingsBuilder::default();
let mut cur_items = smallvec![MatchState {
dot: pattern.iter_delimited(span),
stack: Default::default(),
up: None,
sep: None,
sep_kind: None,
sep_matched: false,
bindings: bindings_builder.alloc(),
is_error: false,
meta_result: None,
}];
let mut next_items = vec![];
loop {
let mut bb_items = SmallVec::new();
let mut eof_items = SmallVec::new();
let mut error_items = SmallVec::new();
stdx::always!(next_items.is_empty());
match_loop_inner(
src.clone(),
&stack,
&mut res,
&mut bindings_builder,
&mut cur_items,
&mut bb_items,
&mut next_items,
&mut eof_items,
&mut error_items,
span,
edition,
);
stdx::always!(cur_items.is_empty());
if !error_items.is_empty() {
error_recover_item = error_items.pop().map(|it| it.bindings);
} else if let [state, ..] = &*eof_items {
error_recover_item = Some(state.bindings.clone());
}
// We need to do some post processing after the `match_loop_inner`.
// If we reached the EOF, check that there is EXACTLY ONE possible matcher. Otherwise,
// either the parse is ambiguous (which should never happen) or there is a syntax error.
if src.peek_n(0).is_none() && stack.is_empty() {
if let [state] = &*eof_items {
// remove all errors, because it is the correct answer !
res = Match::default();
res.bindings = bindings_builder.build(&state.bindings);
} else {
// Error recovery
if let Some(item) = error_recover_item {
res.bindings = bindings_builder.build(&item);
}
res.add_err(ExpandError::new(span.open, ExpandErrorKind::UnexpectedToken));
}
return res;
}
// If there are no possible next positions AND we aren't waiting for the black-box parser,
// then there is a syntax error.
//
// Another possibility is that we need to call out to parse some rust nonterminal
// (black-box) parser. However, if there is not EXACTLY ONE of these, something is wrong.
let has_leftover_tokens = (bb_items.is_empty() && next_items.is_empty())
|| !(bb_items.is_empty() || next_items.is_empty())
|| bb_items.len() > 1;
if has_leftover_tokens {
res.unmatched_tts += src.len();
while let Some(it) = stack.pop() {
src = it;
res.unmatched_tts += src.len();
}
res.add_err(ExpandError::new(span.open, ExpandErrorKind::LeftoverTokens));
if let Some(error_recover_item) = error_recover_item {
res.bindings = bindings_builder.build(&error_recover_item);
}
return res;
}
// Dump all possible `next_items` into `cur_items` for the next iteration.
else if !next_items.is_empty() {
if let Some((iter, _)) = next_items[0].meta_result.take() {
// We've matched a possibly "glued" punct. The matched punct (hence
// `meta_result` also) must be the same for all items.
// FIXME: If there are multiple items, it's definitely redundant (and it's hacky!
// `meta_result` isn't supposed to be used this way).
// We already bumped, so no need to call `.next()` like in the other branch.
src = iter;
for item in next_items.iter_mut() {
item.meta_result = None;
}
} else {
match src.next() {
Some(tt::TokenTree::Subtree(subtree)) => {
stack.push(src.clone());
src = TtIter::new(subtree);
}
None => {
if let Some(iter) = stack.pop() {
src = iter;
}
}
_ => (),
}
}
// Now process the next token
cur_items.extend(next_items.drain(..));
}
// Finally, we have the case where we need to call the black-box parser to get some
// nonterminal.
else {
stdx::always!(bb_items.len() == 1);
let mut item = bb_items.pop().unwrap();
if let Some(OpDelimited::Op(Op::Var { name, .. })) = item.dot.peek() {
let (iter, match_res) = item.meta_result.take().unwrap();
match match_res.value {
Some(fragment) => {
bindings_builder.push_fragment(&mut item.bindings, name, fragment);
}
None if match_res.err.is_none() => {
bindings_builder.push_optional(&mut item.bindings, name);
}
None => {}
}
if let Some(err) = match_res.err {
res.add_err(err);
}
src = iter.clone();
item.dot.next();
} else {
unreachable!()
}
cur_items.push(item);
}
stdx::always!(!cur_items.is_empty());
}
}
fn match_meta_var(
kind: MetaVarKind,
input: &mut TtIter<'_, Span>,
delim_span: DelimSpan<Span>,
edition: Edition,
) -> ExpandResult<Option<Fragment>> {
let fragment = match kind {
MetaVarKind::Path => {
return expect_fragment(input, parser::PrefixEntryPoint::Path, edition, delim_span)
.map(|it| {
it.map(|it| tt::TokenTree::subtree_or_wrap(it, delim_span)).map(Fragment::Path)
});
}
MetaVarKind::Expr(expr) => {
// `expr_2021` should not match underscores, let expressions, or inline const.
// The latter two are for [backwards compatibility][0].
// And `expr` also should not contain let expressions but may contain the other two
// since `Edition2024`.
// HACK: Macro expansion should not be done using "rollback and try another alternative".
// rustc [explicitly checks the next token][1].
// [0]: https://github.com/rust-lang/rust/issues/86730
// [1]: https://github.com/rust-lang/rust/blob/f0c4da499/compiler/rustc_expand/src/mbe/macro_parser.rs#L576
match input.peek_n(0) {
Some(tt::TokenTree::Leaf(tt::Leaf::Ident(it))) => {
let is_err = if it.is_raw.no() && matches!(expr, ExprKind::Expr2021) {
it.sym == sym::underscore || it.sym == sym::let_ || it.sym == sym::const_
} else {
it.sym == sym::let_
};
if is_err {
return ExpandResult::only_err(ExpandError::new(
it.span,
ExpandErrorKind::NoMatchingRule,
));
}
}
_ => {}
};
return expect_fragment(input, parser::PrefixEntryPoint::Expr, edition, delim_span)
.map(|tt| {
tt.map(|tt| match tt {
tt::TokenTree::Leaf(leaf) => tt::Subtree {
delimiter: tt::Delimiter::invisible_spanned(*leaf.span()),
token_trees: Box::new([leaf.into()]),
},
tt::TokenTree::Subtree(mut s) => {
if s.delimiter.kind == tt::DelimiterKind::Invisible {
s.delimiter.kind = tt::DelimiterKind::Parenthesis;
}
s
}
})
.map(Fragment::Expr)
});
}
MetaVarKind::Ident | MetaVarKind::Tt | MetaVarKind::Lifetime | MetaVarKind::Literal => {
let span = input.next_span();
let tt_result = match kind {
MetaVarKind::Ident => input
.expect_ident()
.map(|ident| tt::Leaf::from(ident.clone()).into())
.map_err(|()| {
ExpandError::binding_error(
span.unwrap_or(delim_span.close),
"expected ident",
)
}),
MetaVarKind::Tt => expect_tt(input).map_err(|()| {
ExpandError::binding_error(
span.unwrap_or(delim_span.close),
"expected token tree",
)
}),
MetaVarKind::Lifetime => expect_lifetime(input).map_err(|()| {
ExpandError::binding_error(
span.unwrap_or(delim_span.close),
"expected lifetime",
)
}),
MetaVarKind::Literal => {
let neg = eat_char(input, '-');
input
.expect_literal()
.map(|literal| {
let lit = literal.clone();
match neg {
None => lit.into(),
Some(neg) => tt::TokenTree::Subtree(tt::Subtree {
delimiter: tt::Delimiter::invisible_spanned(*literal.span()),
token_trees: Box::new([neg, lit.into()]),
}),
}
})
.map_err(|()| {
ExpandError::binding_error(
span.unwrap_or(delim_span.close),
"expected literal",
)
})
}
_ => unreachable!(),
};
return tt_result.map(|it| Some(Fragment::Tokens(it))).into();
}
MetaVarKind::Ty => parser::PrefixEntryPoint::Ty,
MetaVarKind::Pat => parser::PrefixEntryPoint::PatTop,
MetaVarKind::PatParam => parser::PrefixEntryPoint::Pat,
MetaVarKind::Stmt => parser::PrefixEntryPoint::Stmt,
MetaVarKind::Block => parser::PrefixEntryPoint::Block,
MetaVarKind::Meta => parser::PrefixEntryPoint::MetaItem,
MetaVarKind::Item => parser::PrefixEntryPoint::Item,
MetaVarKind::Vis => parser::PrefixEntryPoint::Vis,
};
expect_fragment(input, fragment, edition, delim_span).map(|it| it.map(Fragment::Tokens))
}
fn collect_vars(collector_fun: &mut impl FnMut(Symbol), pattern: &MetaTemplate) {
for op in pattern.iter() {
match op {
Op::Var { name, .. } => collector_fun(name.clone()),
Op::Subtree { tokens, .. } => collect_vars(collector_fun, tokens),
Op::Repeat { tokens, .. } => collect_vars(collector_fun, tokens),
Op::Literal(_) | Op::Ident(_) | Op::Punct(_) => {}
Op::Ignore { .. }
| Op::Index { .. }
| Op::Count { .. }
| Op::Len { .. }
| Op::Concat { .. } => {
stdx::never!("metavariable expression in lhs found");
}
}
}
}
impl MetaTemplate {
fn iter_delimited_with(&self, delimiter: tt::Delimiter<Span>) -> OpDelimitedIter<'_> {
OpDelimitedIter { inner: &self.0, idx: 0, delimited: delimiter }
}
fn iter_delimited(&self, span: tt::DelimSpan<Span>) -> OpDelimitedIter<'_> {
OpDelimitedIter {
inner: &self.0,
idx: 0,
delimited: tt::Delimiter::invisible_delim_spanned(span),
}
}
}
#[derive(Debug, Clone, Copy)]
enum OpDelimited<'a> {
Op(&'a Op),
Open,
Close,
}
#[derive(Debug, Clone, Copy)]
struct OpDelimitedIter<'a> {
inner: &'a [Op],
delimited: tt::Delimiter<Span>,
idx: usize,
}
impl<'a> OpDelimitedIter<'a> {
fn is_eof(&self) -> bool {
let len = self.inner.len()
+ if self.delimited.kind != tt::DelimiterKind::Invisible { 2 } else { 0 };
self.idx >= len
}
fn peek(&self) -> Option<OpDelimited<'a>> {
match self.delimited.kind {
tt::DelimiterKind::Invisible => self.inner.get(self.idx).map(OpDelimited::Op),
_ => match self.idx {
0 => Some(OpDelimited::Open),
i if i == self.inner.len() + 1 => Some(OpDelimited::Close),
i => self.inner.get(i - 1).map(OpDelimited::Op),
},
}
}
fn reset(&self) -> Self {
Self { inner: self.inner, idx: 0, delimited: self.delimited }
}
}
impl<'a> Iterator for OpDelimitedIter<'a> {
type Item = OpDelimited<'a>;
fn next(&mut self) -> Option<Self::Item> {
let res = self.peek();
self.idx += 1;
res
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.inner.len()
+ if self.delimited.kind != tt::DelimiterKind::Invisible { 2 } else { 0 };
let remain = len.saturating_sub(self.idx);
(remain, Some(remain))
}
}
fn expect_separator<S: Copy>(iter: &mut TtIter<'_, S>, separator: &Separator) -> bool {
let mut fork = iter.clone();
let ok = match separator {
Separator::Ident(lhs) => match fork.expect_ident_or_underscore() {
Ok(rhs) => rhs.sym == lhs.sym,
Err(_) => false,
},
Separator::Literal(lhs) => match fork.expect_literal() {
Ok(rhs) => match rhs {
tt::Leaf::Literal(rhs) => rhs.symbol == lhs.symbol,
tt::Leaf::Ident(rhs) => rhs.sym == lhs.symbol,
tt::Leaf::Punct(_) => false,
},
Err(_) => false,
},
Separator::Puncts(lhs) => match fork.expect_glued_punct() {
Ok(rhs) => {
let lhs = lhs.iter().map(|it| it.char);
let rhs = rhs.iter().map(|it| it.char);
lhs.eq(rhs)
}
Err(_) => false,
},
};
if ok {
*iter = fork;
}
ok
}
fn expect_tt<S: Copy>(iter: &mut TtIter<'_, S>) -> Result<tt::TokenTree<S>, ()> {
if let Some(tt::TokenTree::Leaf(tt::Leaf::Punct(punct))) = iter.peek_n(0) {
if punct.char == '\'' {
expect_lifetime(iter)
} else {
let puncts = iter.expect_glued_punct()?;
let delimiter = tt::Delimiter {
open: puncts.first().unwrap().span,
close: puncts.last().unwrap().span,
kind: tt::DelimiterKind::Invisible,
};
let token_trees = puncts.into_iter().map(|p| tt::Leaf::Punct(p).into()).collect();
Ok(tt::TokenTree::Subtree(tt::Subtree { delimiter, token_trees }))
}
} else {
iter.next().ok_or(()).cloned()
}
}
fn expect_lifetime<S: Copy>(iter: &mut TtIter<'_, S>) -> Result<tt::TokenTree<S>, ()> {
let punct = iter.expect_single_punct()?;
if punct.char != '\'' {
return Err(());
}
let ident = iter.expect_ident_or_underscore()?;
Ok(tt::Subtree {
delimiter: tt::Delimiter {
open: punct.span,
close: ident.span,
kind: tt::DelimiterKind::Invisible,
},
token_trees: Box::new([
tt::Leaf::Punct(*punct).into(),
tt::Leaf::Ident(ident.clone()).into(),
]),
}
.into())
}
fn eat_char<S: Copy>(iter: &mut TtIter<'_, S>, c: char) -> Option<tt::TokenTree<S>> {
let mut fork = iter.clone();
match fork.expect_char(c) {
Ok(_) => {
let tt = iter.next().cloned();
*iter = fork;
tt
}
Err(_) => None,
}
}