mbe/
expander.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
//! This module takes a (parsed) definition of `macro_rules` invocation, a
//! `tt::TokenTree` representing an argument of macro invocation, and produces a
//! `tt::TokenTree` for the result of the expansion.

mod matcher;
mod transcriber;

use intern::Symbol;
use rustc_hash::FxHashMap;
use span::{Edition, Span};

use crate::{parser::MetaVarKind, ExpandError, ExpandErrorKind, ExpandResult, MatchedArmIndex};

pub(crate) fn expand_rules(
    rules: &[crate::Rule],
    input: &tt::Subtree<Span>,
    marker: impl Fn(&mut Span) + Copy,
    call_site: Span,
    def_site_edition: Edition,
) -> ExpandResult<(tt::Subtree<Span>, MatchedArmIndex)> {
    let mut match_: Option<(matcher::Match, &crate::Rule, usize)> = None;
    for (idx, rule) in rules.iter().enumerate() {
        let new_match = matcher::match_(&rule.lhs, input, def_site_edition);

        if new_match.err.is_none() {
            // If we find a rule that applies without errors, we're done.
            // Unconditionally returning the transcription here makes the
            // `test_repeat_bad_var` test fail.
            let ExpandResult { value, err: transcribe_err } =
                transcriber::transcribe(&rule.rhs, &new_match.bindings, marker, call_site);
            if transcribe_err.is_none() {
                return ExpandResult::ok((value, Some(idx as u32)));
            }
        }
        // Use the rule if we matched more tokens, or bound variables count
        if let Some((prev_match, _, _)) = &match_ {
            if (new_match.unmatched_tts, -(new_match.bound_count as i32))
                < (prev_match.unmatched_tts, -(prev_match.bound_count as i32))
            {
                match_ = Some((new_match, rule, idx));
            }
        } else {
            match_ = Some((new_match, rule, idx));
        }
    }
    if let Some((match_, rule, idx)) = match_ {
        // if we got here, there was no match without errors
        let ExpandResult { value, err: transcribe_err } =
            transcriber::transcribe(&rule.rhs, &match_.bindings, marker, call_site);
        ExpandResult { value: (value, idx.try_into().ok()), err: match_.err.or(transcribe_err) }
    } else {
        ExpandResult::new(
            (
                tt::Subtree {
                    delimiter: tt::Delimiter::invisible_spanned(call_site),
                    token_trees: Box::default(),
                },
                None,
            ),
            ExpandError::new(call_site, ExpandErrorKind::NoMatchingRule),
        )
    }
}

/// The actual algorithm for expansion is not too hard, but is pretty tricky.
/// `Bindings` structure is the key to understanding what we are doing here.
///
/// On the high level, it stores mapping from meta variables to the bits of
/// syntax it should be substituted with. For example, if `$e:expr` is matched
/// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`.
///
/// The tricky bit is dealing with repetitions (`$()*`). Consider this example:
///
/// ```not_rust
/// macro_rules! foo {
///     ($($ i:ident $($ e:expr),*);*) => {
///         $(fn $ i() { $($ e);*; })*
///     }
/// }
/// foo! { foo 1,2,3; bar 4,5,6 }
/// ```
///
/// Here, the `$i` meta variable is matched first with `foo` and then with
/// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`.
///
/// To represent such "multi-mappings", we use a recursive structures: we map
/// variables not to values, but to *lists* of values or other lists (that is,
/// to the trees).
///
/// For the above example, the bindings would store
///
/// ```not_rust
/// i -> [foo, bar]
/// e -> [[1, 2, 3], [4, 5, 6]]
/// ```
///
/// We construct `Bindings` in the `match_lhs`. The interesting case is
/// `TokenTree::Repeat`, where we use `push_nested` to create the desired
/// nesting structure.
///
/// The other side of the puzzle is `expand_subtree`, where we use the bindings
/// to substitute meta variables in the output template. When expanding, we
/// maintain a `nesting` stack of indices which tells us which occurrence from
/// the `Bindings` we should take. We push to the stack when we enter a
/// repetition.
///
/// In other words, `Bindings` is a *multi* mapping from `Symbol` to
/// `tt::TokenTree`, where the index to select a particular `TokenTree` among
/// many is not a plain `usize`, but a `&[usize]`.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct Bindings {
    inner: FxHashMap<Symbol, Binding>,
}

#[derive(Debug, Clone, PartialEq, Eq)]
enum Binding {
    Fragment(Fragment),
    Nested(Vec<Binding>),
    Empty,
    Missing(MetaVarKind),
}

#[derive(Debug, Clone, PartialEq, Eq)]
enum Fragment {
    Empty,
    /// token fragments are just copy-pasted into the output
    Tokens(tt::TokenTree<Span>),
    /// Expr ast fragments are surrounded with `()` on insertion to preserve
    /// precedence. Note that this impl is different from the one currently in
    /// `rustc` -- `rustc` doesn't translate fragments into token trees at all.
    ///
    /// At one point in time, we tried to use "fake" delimiters here à la
    /// proc-macro delimiter=none. As we later discovered, "none" delimiters are
    /// tricky to handle in the parser, and rustc doesn't handle those either.
    Expr(tt::Subtree<Span>),
    /// There are roughly two types of paths: paths in expression context, where a
    /// separator `::` between an identifier and its following generic argument list
    /// is mandatory, and paths in type context, where `::` can be omitted.
    ///
    /// Unlike rustc, we need to transform the parsed fragments back into tokens
    /// during transcription. When the matched path fragment is a type-context path
    /// and is trasncribed as an expression-context path, verbatim transcription
    /// would cause a syntax error. We need to fix it up just before transcribing;
    /// see `transcriber::fix_up_and_push_path_tt()`.
    Path(tt::Subtree<Span>),
}