mbe/expander.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
//! This module takes a (parsed) definition of `macro_rules` invocation, a
//! `tt::TokenTree` representing an argument of macro invocation, and produces a
//! `tt::TokenTree` for the result of the expansion.
mod matcher;
mod transcriber;
use intern::Symbol;
use rustc_hash::FxHashMap;
use span::{Edition, Span};
use crate::{parser::MetaVarKind, ExpandError, ExpandErrorKind, ExpandResult, MatchedArmIndex};
pub(crate) fn expand_rules(
rules: &[crate::Rule],
input: &tt::Subtree<Span>,
marker: impl Fn(&mut Span) + Copy,
call_site: Span,
def_site_edition: Edition,
) -> ExpandResult<(tt::Subtree<Span>, MatchedArmIndex)> {
let mut match_: Option<(matcher::Match, &crate::Rule, usize)> = None;
for (idx, rule) in rules.iter().enumerate() {
let new_match = matcher::match_(&rule.lhs, input, def_site_edition);
if new_match.err.is_none() {
// If we find a rule that applies without errors, we're done.
// Unconditionally returning the transcription here makes the
// `test_repeat_bad_var` test fail.
let ExpandResult { value, err: transcribe_err } =
transcriber::transcribe(&rule.rhs, &new_match.bindings, marker, call_site);
if transcribe_err.is_none() {
return ExpandResult::ok((value, Some(idx as u32)));
}
}
// Use the rule if we matched more tokens, or bound variables count
if let Some((prev_match, _, _)) = &match_ {
if (new_match.unmatched_tts, -(new_match.bound_count as i32))
< (prev_match.unmatched_tts, -(prev_match.bound_count as i32))
{
match_ = Some((new_match, rule, idx));
}
} else {
match_ = Some((new_match, rule, idx));
}
}
if let Some((match_, rule, idx)) = match_ {
// if we got here, there was no match without errors
let ExpandResult { value, err: transcribe_err } =
transcriber::transcribe(&rule.rhs, &match_.bindings, marker, call_site);
ExpandResult { value: (value, idx.try_into().ok()), err: match_.err.or(transcribe_err) }
} else {
ExpandResult::new(
(
tt::Subtree {
delimiter: tt::Delimiter::invisible_spanned(call_site),
token_trees: Box::default(),
},
None,
),
ExpandError::new(call_site, ExpandErrorKind::NoMatchingRule),
)
}
}
/// The actual algorithm for expansion is not too hard, but is pretty tricky.
/// `Bindings` structure is the key to understanding what we are doing here.
///
/// On the high level, it stores mapping from meta variables to the bits of
/// syntax it should be substituted with. For example, if `$e:expr` is matched
/// with `1 + 1` by macro_rules, the `Binding` will store `$e -> 1 + 1`.
///
/// The tricky bit is dealing with repetitions (`$()*`). Consider this example:
///
/// ```not_rust
/// macro_rules! foo {
/// ($($ i:ident $($ e:expr),*);*) => {
/// $(fn $ i() { $($ e);*; })*
/// }
/// }
/// foo! { foo 1,2,3; bar 4,5,6 }
/// ```
///
/// Here, the `$i` meta variable is matched first with `foo` and then with
/// `bar`, and `$e` is matched in turn with `1`, `2`, `3`, `4`, `5`, `6`.
///
/// To represent such "multi-mappings", we use a recursive structures: we map
/// variables not to values, but to *lists* of values or other lists (that is,
/// to the trees).
///
/// For the above example, the bindings would store
///
/// ```not_rust
/// i -> [foo, bar]
/// e -> [[1, 2, 3], [4, 5, 6]]
/// ```
///
/// We construct `Bindings` in the `match_lhs`. The interesting case is
/// `TokenTree::Repeat`, where we use `push_nested` to create the desired
/// nesting structure.
///
/// The other side of the puzzle is `expand_subtree`, where we use the bindings
/// to substitute meta variables in the output template. When expanding, we
/// maintain a `nesting` stack of indices which tells us which occurrence from
/// the `Bindings` we should take. We push to the stack when we enter a
/// repetition.
///
/// In other words, `Bindings` is a *multi* mapping from `Symbol` to
/// `tt::TokenTree`, where the index to select a particular `TokenTree` among
/// many is not a plain `usize`, but a `&[usize]`.
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct Bindings {
inner: FxHashMap<Symbol, Binding>,
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum Binding {
Fragment(Fragment),
Nested(Vec<Binding>),
Empty,
Missing(MetaVarKind),
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum Fragment {
Empty,
/// token fragments are just copy-pasted into the output
Tokens(tt::TokenTree<Span>),
/// Expr ast fragments are surrounded with `()` on insertion to preserve
/// precedence. Note that this impl is different from the one currently in
/// `rustc` -- `rustc` doesn't translate fragments into token trees at all.
///
/// At one point in time, we tried to use "fake" delimiters here à la
/// proc-macro delimiter=none. As we later discovered, "none" delimiters are
/// tricky to handle in the parser, and rustc doesn't handle those either.
Expr(tt::Subtree<Span>),
/// There are roughly two types of paths: paths in expression context, where a
/// separator `::` between an identifier and its following generic argument list
/// is mandatory, and paths in type context, where `::` can be omitted.
///
/// Unlike rustc, we need to transform the parsed fragments back into tokens
/// during transcription. When the matched path fragment is a type-context path
/// and is trasncribed as an expression-context path, verbatim transcription
/// would cause a syntax error. We need to fix it up just before transcribing;
/// see `transcriber::fix_up_and_push_path_tt()`.
Path(tt::Subtree<Span>),
}