hir_expand/name.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
//! See [`Name`].
use std::fmt;
use intern::{Symbol, sym};
use span::{Edition, SyntaxContext};
use syntax::utils::is_raw_identifier;
use syntax::{ast, format_smolstr};
/// `Name` is a wrapper around string, which is used in hir for both references
/// and declarations. In theory, names should also carry hygiene info, but we are
/// not there yet!
///
/// Note that the rawness (`r#`) of names is not preserved. Names are always stored without a `r#` prefix.
/// This is because we want to show (in completions etc.) names as raw depending on the needs
/// of the current crate, for example if it is edition 2021 complete `gen` even if the defining
/// crate is in edition 2024 and wrote `r#gen`, and the opposite holds as well.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Name {
symbol: Symbol,
// If you are making this carry actual hygiene, beware that the special handling for variables and labels
// in bodies can go.
ctx: (),
}
impl fmt::Debug for Name {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Name")
.field("symbol", &self.symbol.as_str())
.field("ctx", &self.ctx)
.finish()
}
}
impl Ord for Name {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.symbol.as_str().cmp(other.symbol.as_str())
}
}
impl PartialOrd for Name {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
// No need to strip `r#`, all comparisons are done against well-known symbols.
impl PartialEq<Symbol> for Name {
fn eq(&self, sym: &Symbol) -> bool {
self.symbol == *sym
}
}
impl PartialEq<&Symbol> for Name {
fn eq(&self, &sym: &&Symbol) -> bool {
self.symbol == *sym
}
}
impl PartialEq<Name> for Symbol {
fn eq(&self, name: &Name) -> bool {
*self == name.symbol
}
}
impl PartialEq<Name> for &Symbol {
fn eq(&self, name: &Name) -> bool {
**self == name.symbol
}
}
impl Name {
fn new_text(text: &str) -> Name {
Name { symbol: Symbol::intern(text), ctx: () }
}
pub fn new(text: &str, mut ctx: SyntaxContext) -> Name {
// For comparisons etc. we remove the edition, because sometimes we search for some `Name`
// and we don't know which edition it came from.
// Can't do that for all `SyntaxContextId`s because it breaks Salsa.
ctx.remove_root_edition();
_ = ctx;
match text.strip_prefix("r#") {
Some(text) => Self::new_text(text),
None => Self::new_text(text),
}
}
pub fn new_root(text: &str) -> Name {
// The edition doesn't matter for hygiene.
Self::new(text, SyntaxContext::root(Edition::Edition2015))
}
pub fn new_tuple_field(idx: usize) -> Name {
let symbol = match idx {
0 => sym::INTEGER_0.clone(),
1 => sym::INTEGER_1.clone(),
2 => sym::INTEGER_2.clone(),
3 => sym::INTEGER_3.clone(),
4 => sym::INTEGER_4.clone(),
5 => sym::INTEGER_5.clone(),
6 => sym::INTEGER_6.clone(),
7 => sym::INTEGER_7.clone(),
8 => sym::INTEGER_8.clone(),
9 => sym::INTEGER_9.clone(),
10 => sym::INTEGER_10.clone(),
11 => sym::INTEGER_11.clone(),
12 => sym::INTEGER_12.clone(),
13 => sym::INTEGER_13.clone(),
14 => sym::INTEGER_14.clone(),
15 => sym::INTEGER_15.clone(),
_ => Symbol::intern(&idx.to_string()),
};
Name { symbol, ctx: () }
}
pub fn new_lifetime(lt: &ast::Lifetime) -> Name {
let text = lt.text();
match text.strip_prefix("'r#") {
Some(text) => Self::new_text(&format_smolstr!("'{text}")),
None => Self::new_text(text.as_str()),
}
}
pub fn new_symbol(symbol: Symbol, ctx: SyntaxContext) -> Self {
debug_assert!(!symbol.as_str().starts_with("r#"));
_ = ctx;
Self { symbol, ctx: () }
}
// FIXME: This needs to go once we have hygiene
pub fn new_symbol_root(sym: Symbol) -> Self {
Self::new_symbol(sym, SyntaxContext::root(Edition::Edition2015))
}
/// A fake name for things missing in the source code.
///
/// For example, `impl Foo for {}` should be treated as a trait impl for a
/// type with a missing name. Similarly, `struct S { : u32 }` should have a
/// single field with a missing name.
///
/// Ideally, we want a `gensym` semantics for missing names -- each missing
/// name is equal only to itself. It's not clear how to implement this in
/// salsa though, so we punt on that bit for a moment.
pub const fn missing() -> Name {
Name { symbol: sym::consts::MISSING_NAME, ctx: () }
}
/// Returns true if this is a fake name for things missing in the source code. See
/// [`missing()`][Self::missing] for details.
///
/// Use this method instead of comparing with `Self::missing()` as missing names
/// (ideally should) have a `gensym` semantics.
pub fn is_missing(&self) -> bool {
self == &Name::missing()
}
/// Generates a new name that attempts to be unique. Should only be used when body lowering and
/// creating desugared locals and labels. The caller is responsible for picking an index
/// that is stable across re-executions
pub fn generate_new_name(idx: usize) -> Name {
Name::new_text(&format!("<ra@gennew>{idx}"))
}
/// Returns the tuple index this name represents if it is a tuple field.
pub fn as_tuple_index(&self) -> Option<usize> {
self.symbol.as_str().parse().ok()
}
/// Whether this name needs to be escaped in the given edition via `r#`.
pub fn needs_escape(&self, edition: Edition) -> bool {
is_raw_identifier(self.symbol.as_str(), edition)
}
/// Returns the text this name represents if it isn't a tuple field.
///
/// Do not use this for user-facing text, use `display` instead to handle editions properly.
// FIXME: This should take a database argument to hide the interning
pub fn as_str(&self) -> &str {
self.symbol.as_str()
}
pub fn display<'a>(
&'a self,
db: &dyn crate::db::ExpandDatabase,
edition: Edition,
) -> impl fmt::Display + 'a {
_ = db;
self.display_no_db(edition)
}
// FIXME: Remove this in favor of `display`, see fixme on `as_str`
#[doc(hidden)]
pub fn display_no_db(&self, edition: Edition) -> impl fmt::Display + '_ {
Display { name: self, needs_escaping: is_raw_identifier(self.symbol.as_str(), edition) }
}
pub fn symbol(&self) -> &Symbol {
&self.symbol
}
}
struct Display<'a> {
name: &'a Name,
needs_escaping: bool,
}
impl fmt::Display for Display<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.needs_escaping {
write!(f, "r#")?;
}
fmt::Display::fmt(self.name.symbol.as_str(), f)
}
}
pub trait AsName {
fn as_name(&self) -> Name;
}
impl AsName for ast::NameRef {
fn as_name(&self) -> Name {
match self.as_tuple_field() {
Some(idx) => Name::new_tuple_field(idx),
None => Name::new_root(&self.text()),
}
}
}
impl AsName for ast::Name {
fn as_name(&self) -> Name {
Name::new_root(&self.text())
}
}
impl AsName for ast::NameOrNameRef {
fn as_name(&self) -> Name {
match self {
ast::NameOrNameRef::Name(it) => it.as_name(),
ast::NameOrNameRef::NameRef(it) => it.as_name(),
}
}
}
impl<Span> AsName for tt::Ident<Span> {
fn as_name(&self) -> Name {
Name::new_root(self.sym.as_str())
}
}
impl AsName for ast::FieldKind {
fn as_name(&self) -> Name {
match self {
ast::FieldKind::Name(nr) => nr.as_name(),
ast::FieldKind::Index(idx) => {
let idx = idx.text().parse::<usize>().unwrap_or(0);
Name::new_tuple_field(idx)
}
}
}
}
impl AsName for base_db::BuiltDependency {
fn as_name(&self) -> Name {
Name::new_symbol_root((*self.name).clone())
}
}