hir_expand/
name.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//! See [`Name`].

use std::fmt;

use intern::{Symbol, sym};
use span::{Edition, SyntaxContext};
use syntax::utils::is_raw_identifier;
use syntax::{ast, format_smolstr};

/// `Name` is a wrapper around string, which is used in hir for both references
/// and declarations. In theory, names should also carry hygiene info, but we are
/// not there yet!
///
/// Note that the rawness (`r#`) of names is not preserved. Names are always stored without a `r#` prefix.
/// This is because we want to show (in completions etc.) names as raw depending on the needs
/// of the current crate, for example if it is edition 2021 complete `gen` even if the defining
/// crate is in edition 2024 and wrote `r#gen`, and the opposite holds as well.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Name {
    symbol: Symbol,
    // If you are making this carry actual hygiene, beware that the special handling for variables and labels
    // in bodies can go.
    ctx: (),
}

impl fmt::Debug for Name {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Name")
            .field("symbol", &self.symbol.as_str())
            .field("ctx", &self.ctx)
            .finish()
    }
}

impl Ord for Name {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.symbol.as_str().cmp(other.symbol.as_str())
    }
}

impl PartialOrd for Name {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

// No need to strip `r#`, all comparisons are done against well-known symbols.
impl PartialEq<Symbol> for Name {
    fn eq(&self, sym: &Symbol) -> bool {
        self.symbol == *sym
    }
}

impl PartialEq<&Symbol> for Name {
    fn eq(&self, &sym: &&Symbol) -> bool {
        self.symbol == *sym
    }
}

impl PartialEq<Name> for Symbol {
    fn eq(&self, name: &Name) -> bool {
        *self == name.symbol
    }
}

impl PartialEq<Name> for &Symbol {
    fn eq(&self, name: &Name) -> bool {
        **self == name.symbol
    }
}

impl Name {
    fn new_text(text: &str) -> Name {
        Name { symbol: Symbol::intern(text), ctx: () }
    }

    pub fn new(text: &str, mut ctx: SyntaxContext) -> Name {
        // For comparisons etc. we remove the edition, because sometimes we search for some `Name`
        // and we don't know which edition it came from.
        // Can't do that for all `SyntaxContextId`s because it breaks Salsa.
        ctx.remove_root_edition();
        _ = ctx;
        match text.strip_prefix("r#") {
            Some(text) => Self::new_text(text),
            None => Self::new_text(text),
        }
    }

    pub fn new_root(text: &str) -> Name {
        // The edition doesn't matter for hygiene.
        Self::new(text, SyntaxContext::root(Edition::Edition2015))
    }

    pub fn new_tuple_field(idx: usize) -> Name {
        let symbol = match idx {
            0 => sym::INTEGER_0.clone(),
            1 => sym::INTEGER_1.clone(),
            2 => sym::INTEGER_2.clone(),
            3 => sym::INTEGER_3.clone(),
            4 => sym::INTEGER_4.clone(),
            5 => sym::INTEGER_5.clone(),
            6 => sym::INTEGER_6.clone(),
            7 => sym::INTEGER_7.clone(),
            8 => sym::INTEGER_8.clone(),
            9 => sym::INTEGER_9.clone(),
            10 => sym::INTEGER_10.clone(),
            11 => sym::INTEGER_11.clone(),
            12 => sym::INTEGER_12.clone(),
            13 => sym::INTEGER_13.clone(),
            14 => sym::INTEGER_14.clone(),
            15 => sym::INTEGER_15.clone(),
            _ => Symbol::intern(&idx.to_string()),
        };
        Name { symbol, ctx: () }
    }

    pub fn new_lifetime(lt: &ast::Lifetime) -> Name {
        let text = lt.text();
        match text.strip_prefix("'r#") {
            Some(text) => Self::new_text(&format_smolstr!("'{text}")),
            None => Self::new_text(text.as_str()),
        }
    }

    pub fn new_symbol(symbol: Symbol, ctx: SyntaxContext) -> Self {
        debug_assert!(!symbol.as_str().starts_with("r#"));
        _ = ctx;
        Self { symbol, ctx: () }
    }

    // FIXME: This needs to go once we have hygiene
    pub fn new_symbol_root(sym: Symbol) -> Self {
        Self::new_symbol(sym, SyntaxContext::root(Edition::Edition2015))
    }

    /// A fake name for things missing in the source code.
    ///
    /// For example, `impl Foo for {}` should be treated as a trait impl for a
    /// type with a missing name. Similarly, `struct S { : u32 }` should have a
    /// single field with a missing name.
    ///
    /// Ideally, we want a `gensym` semantics for missing names -- each missing
    /// name is equal only to itself. It's not clear how to implement this in
    /// salsa though, so we punt on that bit for a moment.
    pub const fn missing() -> Name {
        Name { symbol: sym::consts::MISSING_NAME, ctx: () }
    }

    /// Returns true if this is a fake name for things missing in the source code. See
    /// [`missing()`][Self::missing] for details.
    ///
    /// Use this method instead of comparing with `Self::missing()` as missing names
    /// (ideally should) have a `gensym` semantics.
    pub fn is_missing(&self) -> bool {
        self == &Name::missing()
    }

    /// Generates a new name that attempts to be unique. Should only be used when body lowering and
    /// creating desugared locals and labels. The caller is responsible for picking an index
    /// that is stable across re-executions
    pub fn generate_new_name(idx: usize) -> Name {
        Name::new_text(&format!("<ra@gennew>{idx}"))
    }

    /// Returns the tuple index this name represents if it is a tuple field.
    pub fn as_tuple_index(&self) -> Option<usize> {
        self.symbol.as_str().parse().ok()
    }

    /// Whether this name needs to be escaped in the given edition via `r#`.
    pub fn needs_escape(&self, edition: Edition) -> bool {
        is_raw_identifier(self.symbol.as_str(), edition)
    }

    /// Returns the text this name represents if it isn't a tuple field.
    ///
    /// Do not use this for user-facing text, use `display` instead to handle editions properly.
    // FIXME: This should take a database argument to hide the interning
    pub fn as_str(&self) -> &str {
        self.symbol.as_str()
    }

    pub fn display<'a>(
        &'a self,
        db: &dyn crate::db::ExpandDatabase,
        edition: Edition,
    ) -> impl fmt::Display + 'a {
        _ = db;
        self.display_no_db(edition)
    }

    // FIXME: Remove this in favor of `display`, see fixme on `as_str`
    #[doc(hidden)]
    pub fn display_no_db(&self, edition: Edition) -> impl fmt::Display + '_ {
        Display { name: self, needs_escaping: is_raw_identifier(self.symbol.as_str(), edition) }
    }

    pub fn symbol(&self) -> &Symbol {
        &self.symbol
    }
}

struct Display<'a> {
    name: &'a Name,
    needs_escaping: bool,
}

impl fmt::Display for Display<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.needs_escaping {
            write!(f, "r#")?;
        }
        fmt::Display::fmt(self.name.symbol.as_str(), f)
    }
}

pub trait AsName {
    fn as_name(&self) -> Name;
}

impl AsName for ast::NameRef {
    fn as_name(&self) -> Name {
        match self.as_tuple_field() {
            Some(idx) => Name::new_tuple_field(idx),
            None => Name::new_root(&self.text()),
        }
    }
}

impl AsName for ast::Name {
    fn as_name(&self) -> Name {
        Name::new_root(&self.text())
    }
}

impl AsName for ast::NameOrNameRef {
    fn as_name(&self) -> Name {
        match self {
            ast::NameOrNameRef::Name(it) => it.as_name(),
            ast::NameOrNameRef::NameRef(it) => it.as_name(),
        }
    }
}

impl<Span> AsName for tt::Ident<Span> {
    fn as_name(&self) -> Name {
        Name::new_root(self.sym.as_str())
    }
}

impl AsName for ast::FieldKind {
    fn as_name(&self) -> Name {
        match self {
            ast::FieldKind::Name(nr) => nr.as_name(),
            ast::FieldKind::Index(idx) => {
                let idx = idx.text().parse::<usize>().unwrap_or(0);
                Name::new_tuple_field(idx)
            }
        }
    }
}

impl AsName for base_db::BuiltDependency {
    fn as_name(&self) -> Name {
        Name::new_symbol_root((*self.name).clone())
    }
}