span/map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
//! A map that maps a span to every position in a file. Usually maps a span to some range of positions.
//! Allows bidirectional lookup.
use std::{fmt, hash::Hash};
use stdx::{always, itertools::Itertools};
use crate::{
EditionedFileId, ErasedFileAstId, Span, SpanAnchor, SpanData, SyntaxContextId, TextRange,
TextSize, ROOT_ERASED_FILE_AST_ID,
};
/// Maps absolute text ranges for the corresponding file to the relevant span data.
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub struct SpanMap<S> {
/// The offset stored here is the *end* of the node.
spans: Vec<(TextSize, SpanData<S>)>,
/// Index of the matched macro arm on successful expansion for declarative macros.
// FIXME: Does it make sense to have this here?
pub matched_arm: Option<u32>,
}
impl<S> SpanMap<S>
where
SpanData<S>: Copy,
{
/// Creates a new empty [`SpanMap`].
pub fn empty() -> Self {
Self { spans: Vec::new(), matched_arm: None }
}
/// Finalizes the [`SpanMap`], shrinking its backing storage and validating that the offsets are
/// in order.
pub fn finish(&mut self) {
always!(
self.spans.iter().tuple_windows().all(|(a, b)| a.0 < b.0),
"spans are not in order"
);
self.spans.shrink_to_fit();
}
/// Pushes a new span onto the [`SpanMap`].
pub fn push(&mut self, offset: TextSize, span: SpanData<S>) {
if cfg!(debug_assertions) {
if let Some(&(last_offset, _)) = self.spans.last() {
assert!(
last_offset < offset,
"last_offset({last_offset:?}) must be smaller than offset({offset:?})"
);
}
}
self.spans.push((offset, span));
}
/// Returns all [`TextRange`]s that correspond to the given span.
///
/// Note this does a linear search through the entire backing vector.
pub fn ranges_with_span_exact(
&self,
span: SpanData<S>,
) -> impl Iterator<Item = (TextRange, S)> + '_
where
S: Copy,
{
self.spans.iter().enumerate().filter_map(move |(idx, &(end, s))| {
if !s.eq_ignoring_ctx(span) {
return None;
}
let start = idx.checked_sub(1).map_or(TextSize::new(0), |prev| self.spans[prev].0);
Some((TextRange::new(start, end), s.ctx))
})
}
/// Returns all [`TextRange`]s whose spans contain the given span.
///
/// Note this does a linear search through the entire backing vector.
pub fn ranges_with_span(&self, span: SpanData<S>) -> impl Iterator<Item = (TextRange, S)> + '_
where
S: Copy,
{
self.spans.iter().enumerate().filter_map(move |(idx, &(end, s))| {
if s.anchor != span.anchor {
return None;
}
if !s.range.contains_range(span.range) {
return None;
}
let start = idx.checked_sub(1).map_or(TextSize::new(0), |prev| self.spans[prev].0);
Some((TextRange::new(start, end), s.ctx))
})
}
/// Returns the span at the given position.
pub fn span_at(&self, offset: TextSize) -> SpanData<S> {
let entry = self.spans.partition_point(|&(it, _)| it <= offset);
self.spans[entry].1
}
/// Returns the spans associated with the given range.
/// In other words, this will return all spans that correspond to all offsets within the given range.
pub fn spans_for_range(&self, range: TextRange) -> impl Iterator<Item = SpanData<S>> + '_ {
let (start, end) = (range.start(), range.end());
let start_entry = self.spans.partition_point(|&(it, _)| it <= start);
let end_entry = self.spans[start_entry..].partition_point(|&(it, _)| it <= end); // FIXME: this might be wrong?
self.spans[start_entry..][..end_entry].iter().map(|&(_, s)| s)
}
pub fn iter(&self) -> impl Iterator<Item = (TextSize, SpanData<S>)> + '_ {
self.spans.iter().copied()
}
/// Merges this span map with another span map, where `other` is inserted at (and replaces) `other_range`.
///
/// The length of the replacement node needs to be `other_size`.
pub fn merge(&mut self, other_range: TextRange, other_size: TextSize, other: &SpanMap<S>) {
// I find the following diagram helpful to illustrate the bounds and why we use `<` or `<=`:
// --------------------------------------------------------------------
// 1 3 5 6 7 10 11 <-- offsets we store
// 0-1 1-3 3-5 5-6 6-7 7-10 10-11 <-- ranges these offsets refer to
// 3 .. 7 <-- other_range
// 3-5 5-6 6-7 <-- ranges we replace (len = 7-3 = 4)
// ^^^^^^^^^^^ ^^^^^^^^^^
// remove shift
// 2 3 5 9 <-- offsets we insert
// 0-2 2-3 3-5 5-9 <-- ranges we insert (other_size = 9-0 = 9)
// ------------------------------------
// 1 3
// 0-1 1-3 <-- these remain intact
// 5 6 8 12
// 3-5 5-6 6-8 8-12 <-- we shift these by other_range.start() and insert them
// 15 16
// 12-15 15-16 <-- we shift these by other_size-other_range.len() = 9-4 = 5
// ------------------------------------
// 1 3 5 6 8 12 15 16 <-- final offsets we store
// 0-1 1-3 3-5 5-6 6-8 8-12 12-15 15-16 <-- final ranges
self.spans.retain_mut(|(offset, _)| {
if other_range.start() < *offset && *offset <= other_range.end() {
false
} else {
if *offset > other_range.end() {
*offset += other_size;
*offset -= other_range.len();
}
true
}
});
self.spans
.extend(other.spans.iter().map(|&(offset, span)| (offset + other_range.start(), span)));
self.spans.sort_unstable_by_key(|&(offset, _)| offset);
// Matched arm info is no longer correct once we have multiple macros.
self.matched_arm = None;
}
}
#[derive(PartialEq, Eq, Hash, Debug)]
pub struct RealSpanMap {
file_id: EditionedFileId,
/// Invariant: Sorted vec over TextSize
// FIXME: SortedVec<(TextSize, ErasedFileAstId)>?
pairs: Box<[(TextSize, ErasedFileAstId)]>,
end: TextSize,
}
impl fmt::Display for RealSpanMap {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "RealSpanMap({:?}):", self.file_id)?;
for span in self.pairs.iter() {
writeln!(f, "{}: {}", u32::from(span.0), span.1.into_raw())?;
}
Ok(())
}
}
impl RealSpanMap {
/// Creates a real file span map that returns absolute ranges (relative ranges to the root ast id).
pub fn absolute(file_id: EditionedFileId) -> Self {
RealSpanMap {
file_id,
pairs: Box::from([(TextSize::new(0), ROOT_ERASED_FILE_AST_ID)]),
end: TextSize::new(!0),
}
}
pub fn from_file(
file_id: EditionedFileId,
pairs: Box<[(TextSize, ErasedFileAstId)]>,
end: TextSize,
) -> Self {
Self { file_id, pairs, end }
}
pub fn span_for_range(&self, range: TextRange) -> Span {
assert!(
range.end() <= self.end,
"range {range:?} goes beyond the end of the file {:?}",
self.end
);
let start = range.start();
let idx = self
.pairs
.binary_search_by(|&(it, _)| it.cmp(&start).then(std::cmp::Ordering::Less))
.unwrap_err();
let (offset, ast_id) = self.pairs[idx - 1];
Span {
range: range - offset,
anchor: SpanAnchor { file_id: self.file_id, ast_id },
ctx: SyntaxContextId::ROOT,
}
}
}