parser/
parser.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
//! See [`Parser`].

use std::cell::Cell;

use drop_bomb::DropBomb;
use limit::Limit;

use crate::{
    event::Event,
    input::Input,
    Edition,
    SyntaxKind::{self, EOF, ERROR, TOMBSTONE},
    TokenSet, T,
};

/// `Parser` struct provides the low-level API for
/// navigating through the stream of tokens and
/// constructing the parse tree. The actual parsing
/// happens in the [`grammar`](super::grammar) module.
///
/// However, the result of this `Parser` is not a real
/// tree, but rather a flat stream of events of the form
/// "start expression, consume number literal,
/// finish expression". See `Event` docs for more.
pub(crate) struct Parser<'t> {
    inp: &'t Input,
    pos: usize,
    events: Vec<Event>,
    steps: Cell<u32>,
    edition: Edition,
}

static PARSER_STEP_LIMIT: Limit = Limit::new(15_000_000);

impl<'t> Parser<'t> {
    pub(super) fn new(inp: &'t Input, edition: Edition) -> Parser<'t> {
        Parser { inp, pos: 0, events: Vec::new(), steps: Cell::new(0), edition }
    }

    pub(crate) fn finish(self) -> Vec<Event> {
        self.events
    }

    /// Returns the kind of the current token.
    /// If parser has already reached the end of input,
    /// the special `EOF` kind is returned.
    pub(crate) fn current(&self) -> SyntaxKind {
        self.nth(0)
    }

    /// Lookahead operation: returns the kind of the next nth
    /// token.
    pub(crate) fn nth(&self, n: usize) -> SyntaxKind {
        assert!(n <= 3);

        let steps = self.steps.get();
        assert!(PARSER_STEP_LIMIT.check(steps as usize).is_ok(), "the parser seems stuck");
        self.steps.set(steps + 1);

        self.inp.kind(self.pos + n)
    }

    /// Checks if the current token is `kind`.
    pub(crate) fn at(&self, kind: SyntaxKind) -> bool {
        self.nth_at(0, kind)
    }

    pub(crate) fn nth_at(&self, n: usize, kind: SyntaxKind) -> bool {
        match kind {
            T![-=] => self.at_composite2(n, T![-], T![=]),
            T![->] => self.at_composite2(n, T![-], T![>]),
            T![::] => self.at_composite2(n, T![:], T![:]),
            T![!=] => self.at_composite2(n, T![!], T![=]),
            T![..] => self.at_composite2(n, T![.], T![.]),
            T![*=] => self.at_composite2(n, T![*], T![=]),
            T![/=] => self.at_composite2(n, T![/], T![=]),
            T![&&] => self.at_composite2(n, T![&], T![&]),
            T![&=] => self.at_composite2(n, T![&], T![=]),
            T![%=] => self.at_composite2(n, T![%], T![=]),
            T![^=] => self.at_composite2(n, T![^], T![=]),
            T![+=] => self.at_composite2(n, T![+], T![=]),
            T![<<] => self.at_composite2(n, T![<], T![<]),
            T![<=] => self.at_composite2(n, T![<], T![=]),
            T![==] => self.at_composite2(n, T![=], T![=]),
            T![=>] => self.at_composite2(n, T![=], T![>]),
            T![>=] => self.at_composite2(n, T![>], T![=]),
            T![>>] => self.at_composite2(n, T![>], T![>]),
            T![|=] => self.at_composite2(n, T![|], T![=]),
            T![||] => self.at_composite2(n, T![|], T![|]),

            T![...] => self.at_composite3(n, T![.], T![.], T![.]),
            T![..=] => self.at_composite3(n, T![.], T![.], T![=]),
            T![<<=] => self.at_composite3(n, T![<], T![<], T![=]),
            T![>>=] => self.at_composite3(n, T![>], T![>], T![=]),

            _ => self.inp.kind(self.pos + n) == kind,
        }
    }

    /// Consume the next token if `kind` matches.
    pub(crate) fn eat(&mut self, kind: SyntaxKind) -> bool {
        if !self.at(kind) {
            return false;
        }
        let n_raw_tokens = match kind {
            T![-=]
            | T![->]
            | T![::]
            | T![!=]
            | T![..]
            | T![*=]
            | T![/=]
            | T![&&]
            | T![&=]
            | T![%=]
            | T![^=]
            | T![+=]
            | T![<<]
            | T![<=]
            | T![==]
            | T![=>]
            | T![>=]
            | T![>>]
            | T![|=]
            | T![||] => 2,

            T![...] | T![..=] | T![<<=] | T![>>=] => 3,
            _ => 1,
        };
        self.do_bump(kind, n_raw_tokens);
        true
    }

    pub(crate) fn eat_contextual_kw(&mut self, kind: SyntaxKind) -> bool {
        if !self.at_contextual_kw(kind) {
            return false;
        }
        self.bump_remap(kind);
        true
    }

    fn at_composite2(&self, n: usize, k1: SyntaxKind, k2: SyntaxKind) -> bool {
        self.inp.kind(self.pos + n) == k1
            && self.inp.kind(self.pos + n + 1) == k2
            && self.inp.is_joint(self.pos + n)
    }

    fn at_composite3(&self, n: usize, k1: SyntaxKind, k2: SyntaxKind, k3: SyntaxKind) -> bool {
        self.inp.kind(self.pos + n) == k1
            && self.inp.kind(self.pos + n + 1) == k2
            && self.inp.kind(self.pos + n + 2) == k3
            && self.inp.is_joint(self.pos + n)
            && self.inp.is_joint(self.pos + n + 1)
    }

    /// Checks if the current token is in `kinds`.
    pub(crate) fn at_ts(&self, kinds: TokenSet) -> bool {
        kinds.contains(self.current())
    }

    /// Checks if the current token is contextual keyword `kw`.
    pub(crate) fn at_contextual_kw(&self, kw: SyntaxKind) -> bool {
        self.inp.contextual_kind(self.pos) == kw
    }

    /// Checks if the nth token is contextual keyword `kw`.
    pub(crate) fn nth_at_contextual_kw(&self, n: usize, kw: SyntaxKind) -> bool {
        self.inp.contextual_kind(self.pos + n) == kw
    }

    /// Starts a new node in the syntax tree. All nodes and tokens
    /// consumed between the `start` and the corresponding `Marker::complete`
    /// belong to the same node.
    pub(crate) fn start(&mut self) -> Marker {
        let pos = self.events.len() as u32;
        self.push_event(Event::tombstone());
        Marker::new(pos)
    }

    /// Consume the next token. Panics if the parser isn't currently at `kind`.
    pub(crate) fn bump(&mut self, kind: SyntaxKind) {
        assert!(self.eat(kind));
    }

    /// Advances the parser by one token
    pub(crate) fn bump_any(&mut self) {
        let kind = self.nth(0);
        if kind == EOF {
            return;
        }
        self.do_bump(kind, 1);
    }

    /// Advances the parser by one token
    pub(crate) fn split_float(&mut self, mut marker: Marker) -> (bool, Marker) {
        assert!(self.at(SyntaxKind::FLOAT_NUMBER));
        // we have parse `<something>.`
        // `<something>`.0.1
        // here we need to insert an extra event
        //
        // `<something>`. 0. 1;
        // here we need to change the follow up parse, the return value will cause us to emulate a dot
        // the actual splitting happens later
        let ends_in_dot = !self.inp.is_joint(self.pos);
        if !ends_in_dot {
            let new_marker = self.start();
            let idx = marker.pos as usize;
            match &mut self.events[idx] {
                Event::Start { forward_parent, kind } => {
                    *kind = SyntaxKind::FIELD_EXPR;
                    *forward_parent = Some(new_marker.pos - marker.pos);
                }
                _ => unreachable!(),
            }
            marker.bomb.defuse();
            marker = new_marker;
        };
        self.pos += 1;
        self.push_event(Event::FloatSplitHack { ends_in_dot });
        (ends_in_dot, marker)
    }

    /// Advances the parser by one token, remapping its kind.
    /// This is useful to create contextual keywords from
    /// identifiers. For example, the lexer creates a `union`
    /// *identifier* token, but the parser remaps it to the
    /// `union` keyword, and keyword is what ends up in the
    /// final tree.
    pub(crate) fn bump_remap(&mut self, kind: SyntaxKind) {
        if self.nth(0) == EOF {
            // FIXME: panic!?
            return;
        }
        self.do_bump(kind, 1);
    }

    /// Emit error with the `message`
    /// FIXME: this should be much more fancy and support
    /// structured errors with spans and notes, like rustc
    /// does.
    pub(crate) fn error<T: Into<String>>(&mut self, message: T) {
        let msg = message.into();
        self.push_event(Event::Error { msg });
    }

    /// Consume the next token if it is `kind` or emit an error
    /// otherwise.
    pub(crate) fn expect(&mut self, kind: SyntaxKind) -> bool {
        if self.eat(kind) {
            return true;
        }
        self.error(format!("expected {kind:?}"));
        false
    }

    /// Create an error node and consume the next token.
    pub(crate) fn err_and_bump(&mut self, message: &str) {
        self.err_recover(message, TokenSet::EMPTY);
    }

    /// Create an error node and consume the next token unless it is in the recovery set.
    ///
    /// Returns true if recovery kicked in.
    pub(crate) fn err_recover(&mut self, message: &str, recovery: TokenSet) -> bool {
        if matches!(self.current(), T!['{'] | T!['}']) {
            self.error(message);
            return true;
        }

        if self.at_ts(recovery) {
            self.error(message);
            return true;
        }

        let m = self.start();
        self.error(message);
        self.bump_any();
        m.complete(self, ERROR);
        false
    }

    fn do_bump(&mut self, kind: SyntaxKind, n_raw_tokens: u8) {
        self.pos += n_raw_tokens as usize;
        self.steps.set(0);
        self.push_event(Event::Token { kind, n_raw_tokens });
    }

    fn push_event(&mut self, event: Event) {
        self.events.push(event);
    }

    pub(crate) fn edition(&self) -> Edition {
        self.edition
    }
}

/// See [`Parser::start`].
pub(crate) struct Marker {
    pos: u32,
    bomb: DropBomb,
}

impl Marker {
    fn new(pos: u32) -> Marker {
        Marker { pos, bomb: DropBomb::new("Marker must be either completed or abandoned") }
    }

    /// Finishes the syntax tree node and assigns `kind` to it,
    /// and mark the create a `CompletedMarker` for possible future
    /// operation like `.precede()` to deal with forward_parent.
    pub(crate) fn complete(mut self, p: &mut Parser<'_>, kind: SyntaxKind) -> CompletedMarker {
        self.bomb.defuse();
        let idx = self.pos as usize;
        match &mut p.events[idx] {
            Event::Start { kind: slot, .. } => {
                *slot = kind;
            }
            _ => unreachable!(),
        }
        p.push_event(Event::Finish);
        CompletedMarker::new(self.pos, kind)
    }

    /// Abandons the syntax tree node. All its children
    /// are attached to its parent instead.
    pub(crate) fn abandon(mut self, p: &mut Parser<'_>) {
        self.bomb.defuse();
        let idx = self.pos as usize;
        if idx == p.events.len() - 1 {
            assert!(matches!(
                p.events.pop(),
                Some(Event::Start { kind: TOMBSTONE, forward_parent: None })
            ));
        }
    }
}

pub(crate) struct CompletedMarker {
    pos: u32,
    kind: SyntaxKind,
}

impl CompletedMarker {
    fn new(pos: u32, kind: SyntaxKind) -> Self {
        CompletedMarker { pos, kind }
    }

    /// This method allows to create a new node which starts
    /// *before* the current one. That is, parser could start
    /// node `A`, then complete it, and then after parsing the
    /// whole `A`, decide that it should have started some node
    /// `B` before starting `A`. `precede` allows to do exactly
    /// that. See also docs about
    /// [`Event::Start::forward_parent`](crate::event::Event::Start::forward_parent).
    ///
    /// Given completed events `[START, FINISH]` and its corresponding
    /// `CompletedMarker(pos: 0, _)`.
    /// Append a new `START` events as `[START, FINISH, NEWSTART]`,
    /// then mark `NEWSTART` as `START`'s parent with saving its relative
    /// distance to `NEWSTART` into forward_parent(=2 in this case);
    pub(crate) fn precede(self, p: &mut Parser<'_>) -> Marker {
        let new_pos = p.start();
        let idx = self.pos as usize;
        match &mut p.events[idx] {
            Event::Start { forward_parent, .. } => {
                *forward_parent = Some(new_pos.pos - self.pos);
            }
            _ => unreachable!(),
        }
        new_pos
    }

    /// Extends this completed marker *to the left* up to `m`.
    pub(crate) fn extend_to(self, p: &mut Parser<'_>, mut m: Marker) -> CompletedMarker {
        m.bomb.defuse();
        let idx = m.pos as usize;
        match &mut p.events[idx] {
            Event::Start { forward_parent, .. } => {
                *forward_parent = Some(self.pos - m.pos);
            }
            _ => unreachable!(),
        }
        self
    }

    pub(crate) fn kind(&self) -> SyntaxKind {
        self.kind
    }
}